Penta-quark and perspective

K. Imai (Kyoto)

- Introduction
- Brief review of Penta04 at SPring8
- Width of Θ +
- E559 at KEK-PS
- Perspectives of exotics at JPARC
- Summary

$\Theta^+(Z^+)$ prediction of anti-decuplet

D. Diakonov, V. Petrov, and M. Polyakov, Z. Phys. A 359 (1997) 305.

- Exotic: S=+1
- Low mass: 1530 MeV
- Narrow width: < 15 MeV
- J^p=1/2⁺

Jaffe & Wilzcek

Diquark model predict also Anti-decouplet pentaquark $J^{p}=1/2+$ (N(1440))

M = [1890-180*Y] MeV

Discovery of Pentaquark Θ⁺

SPring-8 LEPS •γ +n -> K⁻ +K⁺+n, Θ⁺ -> K⁺ n Θ⁺: uudd s-bar

T. Nakano et al., Phys.Rev.Lett. 91 (2003) 012002 hep-ex/0301020

Confirmation from US and Russia

Further confirmation with proton target

hep-ex/0307083

Excitement

• The discovery of the Θ +(1540) this year marks the beginning of a new and rich spectroscopy in QCD....

R.Jaffe (2003.8)

Renaissance of Hadron Spectroscopy ! (K.I)

S=-2 Penta-quark Ξ⁻⁻ M=1862 MeV Γ<18 MeV

NA49 collaboration hep-ex/0310014

FIG. 2: (Color online) Invariant mass spectra after selection cuts for $\Xi^{-}\pi^{-}$ (a), $\Xi^{-}\pi^{+}$ (b), $\overline{\Xi}^{+}\pi^{-}$ (note that the $\overline{\Xi}(1530)^{0}$ state is also visible) (c), and $\overline{\Xi}^{+}\pi^{+}$ (d). The shaded histograms are the normalised mixed-event backgrounds.

FIG. 3: (Color online) (a) The sum of the $\Xi^{-}\pi^{-}$, $\Xi^{-}\pi^{+}$, $\overline{\Xi}^{+}\pi^{-}$ and $\overline{\Xi}^{+}\pi^{+}$ invariant mass spectra. The shaded histogram shows the normalised mixed-event background. (b) Background subtracted spectrum with the Gaussian fit to the peak.

Charmed pentaquark HERA-H1

M=3099 MeV Γ=12 MeV

Summary of positive results on Θ + (Exotics04 04/02 Kyoto)

 Θ^+ Mass (MeV) Γ (MeV) Experiment $: 1540 \pm 10 \pm 5 : 25$ LEPS/SPring-8 :9 $: 1539 \pm 2 \pm few$ DIANA CLAS(d) $: 1542 \pm 2 \pm 5 : 21$ SAPHIR $: 1540 \pm 4 \pm 2 : 25$ $: 1533 \pm 5 : 20$ **ITEP**(ν) CLAS(p) $: 1555 \pm 1 \pm 10$ $: 26 \pm 7$ **HERMES** $: 1528 \pm 2.6 \pm 2.1 : 19 \pm 5 \pm 2$ ITEP(p) $: 1526 \pm 3 \pm 3 : 24$ ZEUS : 1527 + 2 : 23COSY : 18 : 1530+5

Penta04 at SPring8 (7/20-23)

- Null results (mostly preliminary) from high energy experiments.
- The Θ peak was confirmed by new SPring8 data of D-target (preliminary).
- JLab high statistics experiments will provide results in the end of this year.
- Many interesting theory talks. (~20papers/month)

Summary of Positive Results (W.Lorenzon)

▶ nK⁺

World Average: 1532.5±2.4 MeV

Large variation in mass not uncommon for new, decaying particles but need to better estimate exp. uncertainties

Summary of Null Results (W.Lorenzon)

Experiment	Θ^+ (1540)	Ξ ^{−−} (1862)	$D^{*-}p(3100)$	Reaction
	$(uudd\overline{s})$	$(ddss\overline{s})$	$(uudd\overline{c})$	
HERA-B	NO	NO		$pA \to \Theta^+ X, \ \Xi^{} X$
E690	NO	NO		$pp \to \Theta^+ X, \ \Xi^{} X$
CDF	NO	NO	NO	$p\overline{p} \to \Theta^+ X, \ \Xi^{} X, \ \Theta^c X$
HyperCP	NO			$\pi, K, p ightarrow \Theta^+ X$
BaBar	NO	NO		$e^+e^- \to \Theta^+ X, \ \Xi^{} X$
ZEUS	yes	NO	NO	$ep \to \Theta^+ X, \ \Xi^{} X, \ \Theta^c X$
ALEPH	NO	NO	NO	$e^+e^- \to \Theta^+ X$
DELPHI	NO			$e^+e^- ightarrow \Sigma^+ K^0 p$
	NO			$AuAu \to \Theta^+ X$
FOCUS			NO	$\gamma A o \Theta^c X$
→ BES	NO			$e^+e^- \to J/\Psi \to \Theta^+\overline{\Theta^-}$

0 null results published, only 3 on arXiv so far (7-18-04) need null results to be published

pK_s and pK⁻ (E960 Preliminary)

Yield of narrow (pK_s) at 1540 MeV is less than 25 events (95% CL).

$\Xi^{-}\pi^{+}$ and $\Xi^{-}\pi^{-}$ (E960 Preliminary)

Θ^+ (D₂ target) at SP8 (Preliminary)

 No large difference among the three Fermi motion corrections.

1.9

LEPS: Θ⁺ spectrum (Preliminary)

The peak was not due to statistical fluctuation

• The excess above the BG level is ~90 events.

•The peak position, width, significance strongly depends on the BG shape.

Background estimate from LH₂ target mixed-event analysis.

Narrow width ?

- R.Cahn & G.Trilling hep-ph/0311245
- R.Arndt, Strakovsky, Workman, P.R C68 (03) 042201

 $K+n \rightarrow K+n, \ K+n \rightarrow K^op$

- Resonant cross section (Breit-Wigner formula) $\sigma(m) = B_i B_f \sigma_0 (\Gamma^2/4) / \{(m - m_0)^2 + \Gamma^2/4\}$ $\sigma_0 = 4\pi (2J+1) / k^2 (2s_1+1) (2s_2+1) = (68mb)$ $\Theta^+ \rightarrow K^+n, K^0p (Br=1:1) J=1/2 m_0 = 1540 MeV$ integral of $\sigma(m)$ gives total resonant cross section
- Width (Γ) < > Cross Section (σ)

DIANA Experiment

- K+(n) -> K^o+p in Xenon Bubble Ch. (Fermi motion)
 Θ+ resonance at P(K+)=440MeV/c
- assume all background reaction is charge exchange K+d -> K^opp 4.1+0.3 mb (from old BC data)
- From DIANA data (resonance/charge exchange),
 -> resonant cross section = 24 mb MeV
 -> Γ= 0.9+-0.3 MeV

(rescattering in nuclei is neglected)

lacksquare

DIANA Data

 $K^{\scriptscriptstyle +} \, X e \qquad K^0 \, p \; X \quad (K^{\scriptscriptstyle +} \, n \qquad K^0 \, p)$

hep-ex/0304040

M = 1539±2 MeV Γ < 9 MeV

Old data (K+d CEX)

- P(K+) = 376 MeV/c $\sigma(cex) = 3.1+-0.4 \text{ mb}$
- 434
 530
 6.5+-0.6
- Fermi smeared cross section near resonance deduced from neutron momentum distribution in deuteron $\sigma(\sim m(\Theta))= 3.6 mb/MeV B_i B_f \Gamma$

 \rightarrow 1mb possible excess \rightarrow 1.1 MeV for width

Old data (K+d σ (tot))

- P(K+)=366MeV/c σ(tot)=21.41+-0.30mb
- 440 23.46+-0.24
- 506 24.16+-0.23
- Linear interpolation -> excess of 0.60+-0.30mb at 440MeV/c
 - -> Γ=0.8MeV (Cahn & Trilling)
- More conservative limit -> 6 MeV (Nussinov hep-ph/0307357)

Increase of chi-square in K+N Phase shift analysis (for P01) (Arndt et al.)

\rightarrow should be less than 1MeV

Comparison with $\Lambda(1520)$

 $\Lambda(1520)$ mass is almost same as Θ + (1540)

- Γ=15.6 MeV
- Br(K-p)=0.45 Br($\Sigma \pi$)=0.45 Br($\Lambda \pi \pi$)=0.1
- In old BC data Λ(1520) was clearly observed via π-p -> K^o K-p while π-p -> K- Θ+ (K+n, K^op) was not observed. (Next talk by K.Miwa)
- With γ beam (SP-8) γ d-> K-K+pn yield of $\Lambda(1520)$ >> $\Theta(1540)$
- -> Width of Θ + is ~ 1/10 of that of $\Lambda(1520)$

High resolution spectroscopy of pentaquark Θ^+ (E559 at KEK-PS)

- K.Imai, K.Miwa, M.Hayata, M.Miyabe, N.Muramatsu, M.Niiyama, N.Saito, M.Wagner, M.Yosoi (Kyoto U.)
- T.Nagae, M.Ieiri, S.Ishimoto, N.Noumi, Y.Sato, S.Sawada, M.Sekimoto, H.Takahashi, T.Takahashi, A.Toyoda (KEK)
- H.Fujioka, T.Maruta (U. Tokyo)
- T.Fukuda, P.K.Saha (Osaka ECU)
- K.Ajimura (Osaka Univ.)
- T.Nakano (RCNP)
- K.Hicks (Ohio)
- K+ p ->π+ Θ+ reaction with SKS spectrometer at KEK K6 beam line
- excellent mass resolution $\Delta E=1.3 \text{ MeV}$
- Decay angular distribution for spin determination

Experimental setup around target and Range counter (for K+ detection)

Expected Missing Mass Spectrum (with K+ detection)

Perspective at JPARC

- Θ + width, spin-parity, (determined before JPARC ?)
- Θ + nuclei (Hyponuclei) (K+, π +) spectroscopy at P_{K+}~1GeV/c
- Other penta-quarks
 Anti-decuplet N*, Σ*, Ξ*(Ξ--,Ξ+)
 Charmed pentaquark

Spin-Parity of Θ^+

Spin-parity: J^π= ¹/₂+ or ¹/₂- or 3/2 ->selection of models s-wave or p-wave ? K+n -> K+n phase shift analysis

pol.γ N -> K- Θ+ decay distribution of Θ+ -> JLab high statistics data -> SPring-8 TPC project

K+p -> π +Θ+, Θ⁺ ->K+n (E559) pp -> Σ +Θ+ (COSY) Hosaka

Beam line requirements for pentaquark

pentaquark Θ

K+ beam ~500 MeV/c for K+n->K+n, K⁰p

K+ beam ~1 GeV/c for Θ^+ -nuclear physics

• other anti-decuplet pentaquark

K- and π beams up to 2.5 GeV/c (for Ξ --?)

• charmed pentaquark Lipkin 5 GeV(on-axis) neutrino-beam for bound Θ_{c}

Summary

- *Pentaquark, which was not known at NP02 and LOI submission period, is now a very hot topic in hadron physics and QCD.*
- We have to prepare for this physics at JPARC, although we can not predict how things develop untill 2008.
- Low momentum (0.5~1.0 GeV/c) K+ beam of high resolution will be useful for Θ+ and Θ-nuclear physics.
- JPARC can be a major playground for the exotic hadron spectroscopy.
- Neutrino beam may be useful for charmed pentaquark search and also other hadron physics.

COSY-TOF pp -> Σ^+ K°p

Figure 7: Efficiency corrected invariant mass spectrum of the K^0p subsystem obtained from the full sample.