Slow Extraction from J-PARC Main Ring

KEK Acc. Lab. Masahito Tomizawa

•Overview of Slow Extraction from J-PARC MR
•Beam Powers and Acceleration Patterns
•MR slow extraction schedule

J-PARC Main Ring

•3.3x10¹⁴ protons per pulse(15μA) full beam power : 750kW @50GeV

•Circumference 1567.5m with 3x116m long straight sections

•Imaginary t lattice below transition also for top energy

•Energy Phase I 30GeV slow extraction 40GeV fast extraction

phase II(MR+Lab.) 50GeV

MR Slow Extraction

 •full beam power : 750kW @50GeV
 → beam loss: as possible as small from radiation safety problem

Simulation predicts 1% hit rate on 100µm thick ESS. Particles scattered from the ESS Maintenance scenario (ESS,SM)

•third integer resonance separatrix : linear easy to tune separatrix angle and step size by adjusting resonant sextupoles

coasting beam extraction

MR Slow Extraction Device

electrostatic septum
septum magnets (4 families)
4-bump magnets
8-resonant sextupole magnets (2 families)
spill control system
(quadrupoles, monitors, feedback modules)
collimators (high intensity)

Slow Extraction Straight Section

$\phi 80 \mu m$ wires, L=1.5m,gap=25mm,V=170kV@50GeV,E=6.8MV/m

thinner ribbon foil

$25 \mu m$ ribbon test machine

Preliminary alignment measurement shows promising result!!

180MeV Linac

Original Design of J-PARC Accelerators Linac: 400MeV **RCS: 2bunches acceleration** MR: 2bunches × 4batches Injection(h=9), 3.64s rep. 15µA--->750kW @50GeV **Day-One** (1)Linac: 180MeV, RCS: 2bunches MR: 2bunches × 4batches Injection(h=9), 3.64s rep. $15\mu A \times 0.6$ (estimated)= $9\mu A$

(2) Linac: 180MeV, RCS: one bunch for MR
 MR: 1bunch x 15batches injection(h=18), 4.07s rep.
 15μA × 3.64/4.07 × 0.6 × 15/8=15μA

Technical feasibility of (2) is being studied

Acceleration Patterns and Design Beam Power 8 bunches (h=9) same dB/dt as 40GeV case

repetition period 2.9s (3.64s) Slow Duty=0.30 @rise:0.2s, reset0.3s

Acceleration Patterns and Design Beam Power 15 bunches (h=18) same dB/dt as 40GeV case

repetition period 3.33s (3.64s) Slow Duty=0.26 @rise:0.2s, reset0.3s **Longer Flat Top for 30GeV Energy Operation**

Flat top for 50GeV is 0.7s

(1)Power supply of D,Q magnets (existing) loading for condensers and Hybrid Filters

(2)Cooling Design of SM coils

Acceleration Patterns and Design Beam Power 15 bunches (h=18) same dB/dt as 40GeV case

MR Slow Extraction Schedule

• Production of slow extraction device	Fy. 2005
• Installation in the MR	Fy. 2006
MR beam Commissioning	Nov. 2007 ~
Slow Extraction Commissioning	July 2008 ~

50GeV Main Ring Slow Extraction Members

M.Tomizawa, Y.Arakaki, T.Nakagawa, I.Sakai, F. Kuanjun, M.Shirakata, S.Igarashi, T.Yokoi, Y. Yuasa N.Tokuda, T.Kato, H.Kobayashi, H.Sato, K.Sato, Y.Mori, M. Yoshioka, T. Oogoe

Acceleration Patterns and Design Beam Power 8 bunches (h=9) same dB/dt as 40GeV case

