Strangeness Spin Contribution to the Nucleon Spin Measured at J-PARC

to be

Naohito Saito (Kyoto)

For

"Strange-Spin in Neutrino Scattering" WG Yoshiyuki Miyachi (TITech) and Toshi-Aki Shibata (TITech) and more

"Proton Spin Crisis" EMC PLB & NP (1988)

 Proton Spin carried by Quark Spin is ZERO??
 – Gluon Spin ?
 – Orbital Motion ?

DIS of Lepton from Nucleon

k

 $x \mathbf{R} = p$

Elastic

- Structure Probed by Photon
 - Function of x and $Q^2 = -q^2$
 - Charge Squared
 - Not distinguish Down and Strange
 - Insensitive to Gluon
- Objective is

$$\Delta \Sigma = \Delta U + \Delta D + \Delta S$$

$$\begin{array}{l} \begin{array}{l} \text{Obs} \\ \text{Proton} \end{array} \left\{ g_{1}^{p}(x,Q^{2}) = \frac{1}{2} \left\{ \frac{4}{9} \Delta U(x,Q^{2}) + \frac{1}{9} \Delta D(x,Q^{2}) + \frac{1}{9} \Delta S(x,Q^{2}) \right\} \\ \text{Neutron} \end{array} \right\} \\ g_{1}^{n}(x,Q^{2}) = \frac{1}{2} \left\{ \frac{1}{9} \Delta U(x,Q^{2}) + \frac{4}{9} \Delta D(x,Q^{2}) + \frac{1}{9} \Delta S(x,Q^{2}) \right\} \end{array}$$

Separation of Pol' Quark Dist's
• Only two independent measurements

$$g_1^p(x, Q^2)$$
 and $g_1^n(x, Q^2)$
• Separation into 3 quark dist's relies on
 -1^{st} moments (employ β -decay const's), unless
How much do we know about $\Delta g(x)$?
Non-Singlet Quark Distribution
 $\frac{\partial \Delta q_{NS}(x, Q^2)}{\partial (\ln Q^2)} = \frac{\alpha_s(Q^2)}{2\pi} \Delta P_{q\pm,NS}(x) \otimes \Delta q_{NS}(x, Q^2)}{\Delta q_{ss}(x, Q^2)}$
Singlet Quark Distribution
 $\frac{\partial}{\partial (\ln Q^2)} \left(\frac{\Delta \Sigma(x, Q^2)}{\Delta g(x, Q^2)} \right) = \frac{\alpha_s(Q^2)}{2\pi} \left(\frac{\Delta P_{qq}(x)}{\Delta P_{gq}(x)} \right) \otimes \left(\frac{\Delta \Sigma(x, Q^2)}{\Delta g(x, Q^2)} \right)$

Precision Data from DIS

- Precision Data in Wide Kinematical Range
 - Q² evolution agrees with pQCD
- Notes:
 - Only Fixed Target
 Spin Experiments
 so far...
 - Need a Collider to extend kinematical coverage

Assumptions in g_1 to $\Delta \Sigma$

- Relation between St Fn and β-decay const
 - Confirmed Experimentally (Bjorken SR!)
- Extrapolation to Small-x
 - No (solid) guideline from Thery
 - Regge? BFKL? δ -fn at x=0?
- Flavor SU(3) assumption
 - What precision?
 - Require independent determination of...

AAC Collaboration in PRD (2000)

Polarised PDF

Asymmetry Analysis Collaboration M. Hirai, S. Kumano and N. Saito, PRD (2004)

Impact of PHENIX Prompt Photon If we include Future PHENIX Data into Global Analysis...

Impact of Δs Measurement Improve Knowledge on Spin Flavor Structure of the Proton - Beyond Flavor SU(3) assumption Neutron EDM J.Ellis and R.A.Flores PLB377(96)83 – *n*-EDM predicted $d_{n} = \eta^{E} \left(\Delta u d_{u}^{E} + \Delta d d_{d}^{E} + \Delta s d_{s}^{E} \right)$ using q-EDM and Δq $\propto m_{\mu}\Delta u + m_{d}\Delta d + m_{s}\Delta s$ Dark Matter J.Ellis and M. Karliner Lecure at Erice School 95 hep-ph/96012 - Better determination of Dark-Matter reaction $\sigma(\chi p \to \chi p) \propto \frac{4}{9} \Delta u + \frac{1}{9} (\Delta d + \Delta s)$ (photino) or $\propto \frac{17}{36}\Delta u + \frac{5}{36}(\Delta d + \Delta s)$ (pure U(1) gaugino)

BNL-Experiment 734

(L.A.Ahrens et.al PRD35(87)785; Reanalysis G.T. Garvey et. al PRC48(93)761)

Measured elastic (a) scattering cross section c²/ GeV²) $vp \rightarrow vp$ and $\overline{v}p \rightarrow \overline{v}p$ - Liquid scintillator + Drift Too High Q^2 Cut-off Tube 170 t -0.5E19 POT for neutrino Go to lower Q^2 and 2.5E19POT for anti-79% from Carbon neutrino $-Q^2 > 0.40 \text{ GeV}^2$ **Extract Pure Proton** 0.4 0.6 1.0 0.0 0.2 0.8 12 $Q^2 (GeV^2 / c^2)$

vN-Elastic Scattering Exp at J-PARC

- On-axis at near detector hall for T2K Experiment
- Utilize both two types of LiqScintillator with different H/C mixture for pure proton signal
 - e.g Bicron BC510A (H/C=1.212) and BC-533 (H/C=1.96)
 - Pure Carbon can be extracted for vA Xsection - e.g. $5x5x5m^3 \sim 125$ t
- IE21 POT possible in one year (130 days)
 - 30 times BNL-E734
 - Require polarity change for v and \overline{v}

Sensitivity for Δs

Assumptions

- Similar Detection Efficiency to E734:
 - 7.6% for neutrino-N elastic
 - 5.4% for anti-neutrino-N elastic
- However with lower Q^2 cut-off : 0.1 GeV²
 - Achievable with more uniform detector
- 25 times more statistics but pure proton only 1/6
 - Factor 2 reduction in statistical error
- Systematic control improvements to ~5%
 - E734 7.6% dominated by Beam Flux and Nuclear Effects
 - Possible to remove Nuclear Effects which could be larger in lower Q² region

Other Existing Efforts

- Semi-Inclusive DIS
 - DESY-HERMES and CERN-COMPASS
 - Subject to FF Uncertainties: BELLE measurement of FF
 - Limited in x-region
- RHIC Spin (Polarized pp Collider at BNL)
 - Clear determination of u-bar and d-bar with W production, however limited in x-region
 - Measurement of Ds requires charm-associated W production : small xsection

FINeSSE experiment proposed at FNAL; BNL

- Extend to lower Q^2 (as we discussed)
- Seem to propose only neutrino measurements
 - Only quadratic combination will be determined → subject to two solution problem
- Subject to Nuclear Effects (Liq Scintillator)

Other physics topics to be investigated

- Neutrino-Nuclear cross section
 - Interesting by its own; important subject of Nuclear/Hadron Physics
 - Also provide a better control in oscillation physics
- Weak-Mixing Angle measurements
 - Low-Q2 determination of $sin^2\theta_{\rm W}$
 - Interests triggered by NuTeV, Atomic PV, and PV in eN scattering
 - Q: Testing EW? Or Testing Hadron Physics?

Summary

Strangeness Polarization in the Proton ∆s is still missing key to resolve "Proton Spin Crisis"

- Impact of the better determination is huge in Particle/Nuclear Physics
- New measurement at J-PARC is considered

Let's Work Together to solve one of the most important problems in Hadron Physics!

http://www.nucl.phy.titech.ac.jp/~sspin/