Strangeness Spin Contribution to the Nucleon Spin Measured at J-PARC Nes4, Tokai, August 2-4, 2004 to be

Naohito Saito (Kyoto)
For
"Strange-Spin in Neutrino Scattering" WG Yoshiyuki Miyachi (TITech)
and Toshi-Aki Shibata (TITech) and more

"Proton Spin Crisis" EMC PLE そ NP (1988)

- Proton Spín carried by Quark Spin is ZERO??
- Gluon Spin?
- Orbital Motion?

Parton Distribution Functions

\lrcorner Ouenk Distributions

- Gluon Distributions

No Transverse Gluon Distribution

DIS of Lepton firon Nucleon

\lrcorner Stiructure Probed by Photon

- Function of x and $Q^{2}=-q^{2}$
- \propto Charge Squared
- Not distinguish Down and Strange
- Insensitive to Gluon
- Objective is

$$
\Delta \Sigma=\Delta U+\Delta D+\Delta S
$$

」 Obst
Proton

$$
\left\{\begin{array}{l}
g_{1}^{p}\left(x, Q^{2}\right)=\frac{1}{2}\left\{\frac{4}{9} \Delta U\left(x, Q^{2}\right)+\frac{1}{9} \Delta D\left(x, Q^{2}\right)+\frac{1}{9} \Delta S\left(x, Q^{2}\right)\right\} \\
g_{1}^{n}\left(x, Q^{2}\right)=\frac{1}{2}\left\{\frac{1}{9} \Delta U\left(x, Q^{2}\right)+\frac{4}{9} \Delta D\left(x, Q^{2}\right)+\frac{1}{9} \Delta S\left(x, Q^{2}\right)\right\}
\end{array}\right.
$$

Separation of Pol' Quark Dist's

\lrcorner Only two independent measurements $g_{1}{ }^{p}\left(x, Q^{2}\right)$ and $g_{1}^{n}\left(x, Q^{2}\right)$
Separation into 3 quark dist's relies on

- $1^{\text {st }}$ moments (employ β-decay const's), unless

How much do we know about $\Delta g(x)$?
Non-Singlet Quark Distribution
$\frac{\partial \Delta q_{N S}\left(x, Q^{2}\right)}{\partial\left(\ln Q^{2}\right)}=\frac{\alpha_{S}\left(Q^{2}\right)}{2 \pi} \Delta P_{q \pm, N S}(x) \otimes \underline{\underline{\Delta q_{N S}}\left(x, Q^{2}\right)}$

Singlet Quark Distribution

$\left(\begin{array}{l}\Delta \Sigma \\ a_{3} \\ a_{8}\end{array}\right)=\left(\begin{array}{c}\Delta U+\Delta D+\Delta S \\ \Delta U-\Delta D \\ \Delta U+\Delta D-2 \Delta S\end{array}\right)$

$$
\frac{\partial}{\partial\left(\ln Q^{2}\right)}\binom{\Delta \Sigma\left(x, Q^{2}\right)}{\Delta g\left(x, Q^{2}\right)}=\frac{\alpha_{S}\left(Q^{2}\right)}{2 \pi}\left(\begin{array}{cc}
\Delta P_{q q}(x) & \Delta P_{q g}(x) \\
\Delta P_{g q}(x) & \Delta P_{g g}(x)
\end{array}\right) \otimes\binom{\Delta \Sigma\left(x, Q^{2}\right)}{\Delta g\left(x, Q^{2}\right)}
$$

Precision Data from DIS

\lrcorner Precision Datia in Wide Kinematical Range

- Q ${ }^{2}$ evolution agrees with pQCD
- Notes :
- Only Fixed Target Spin Experiments so far...
- Need a Collider to extend kinematical coverage

From $g_{1}\left(x, Q^{2}\right)$ to $\Delta \Sigma$

\lrcorner Integratie over $x(0,1)$!
$\Gamma_{1}^{p}=\frac{1}{2}\left(\frac{4}{9} \Delta U+\frac{1}{9} \Delta D+\frac{1}{9} \Delta s \sigma^{\kappa} 1.2 E \begin{array}{l}\chi^{2} / \mathrm{r} \\ \mathrm{p} 0 \\ \mathrm{p} 1\end{array}\right.$ 島

($(\Delta S=-0.124 \pm 0.046)$

$$
40-42.0 .4 e^{-0.6^{-0.4}}
$$

Assumptions in g_{1} to $\Delta \Sigma$

\lrcorner Relation between St Fn and β-decay const

- Confirmed Experimentally (Bjorken SR!)
- Extrapolation to Small-x
- No (solid) guideline from Thery
- Regge? BFKL? δ-fn at $x=0$?
- Flavor SU(3) assumption
- What precision?
- Require independent determination of...

AAC Collaboration in PRD (2000)

Polarised PDF

Asyrrimetry Asialysis Collaiboration
M. Hireli, S. Kumano anid N. Saito, PRD (2004)

Impact of PHENIX Prompt Photon

\lrcorner If we include Fuiture PHENIX Datia into

 Global Analysis...

M. Hirai et al.

Impact of Δs Measurement

\lrcorner Improve Knowledge on Spin Flavor Structure of the Proton

- Beyond Flavor SU(3) assumption
- Neutron EDM
J.Ellis and R.A.Flores PLB377(96)83
- n-EDM predicted using q-EDM and Δq

$$
d_{n}=\eta^{E}\left(\Delta u d_{u}^{E}+\Delta d d_{d}^{E}+\Delta s d_{s}^{E}\right)
$$

- Dark Matter

$$
\propto m_{u} \Delta u+m_{d} \Delta d+m_{s} \Delta s
$$

J.Ellis and M. Karliner Lecure at Erice School 95 hep-ph/96012

- Better determination of Dark-Matter reaction

$$
\begin{aligned}
\sigma(\chi p & \rightarrow \chi p) \propto \frac{4}{9} \Delta u+\frac{1}{9}(\Delta d+\Delta s) \text { (photino) or } \\
& \propto \frac{17}{36} \Delta u+\frac{5}{36}(\Delta d+\Delta s)(\text { pure } U(1) \text { gaugino) }
\end{aligned}
$$

vN Elastic Scattering

\lrcorner Cross section for vN elastic Scatitering

$$
\begin{aligned}
& \frac{d \sigma}{d Q^{2}}=\frac{G_{F}^{2}}{2 \pi} \frac{E_{v}^{2}}{Q^{2}}\left[A \pm B W+C W^{2}\right] \\
& W=4\left(E_{v} / M_{p}-\tau\right) ; \tau=Q^{2} / 4 M_{p}^{2}
\end{aligned}
$$

- Where (Q^{2} dropped for brevity)

$$
A=\frac{1}{4}\left[G_{1}^{2}(1+\tau)-\left(F_{1}^{2}-\tau F_{2}^{2}\right)(1-\tau)+4 \tau F_{1} F_{2}\right]
$$

$$
B=-\frac{1}{4}\left[G_{1}\left(F_{1}+\tau F_{2}\right)\right] \quad G_{1}\left(Q^{2}\right)=\frac{-0.631}{\left(1+Q^{2} / M_{A}^{2}\right)^{2}}+\frac{G_{1}^{s}\left(Q^{2}\right)}{2}
$$

$$
C=\frac{1}{16} \frac{M_{p}^{2}}{Q^{2}}\left[G_{1}^{2}+F_{1}^{2}+\tau F_{2}^{2}\right]
$$

$$
G_{1}^{s}(0)=\Delta s
$$

BNL-Experiment 734

- Measured elastic scattering cross section $V p \rightarrow V P$ and $\bar{\nu} p \rightarrow \overline{\nu p}$
- Liquid scintillator + Drift Tube 170 t
- 0.5E19 POT for neutrino and 2.5E19POT for antineutrino
$-Q^{2}>0.40 \mathrm{GeV}^{2}$

Too High Q^{2} Cut-off

79\% from Carbon

VN-Elastic Scattering Ex ρ at J-PARC

On-axis at near detector hall for $T 2 K$ Experiment

- Utilize both two types of LiqScintillator with different H/C mixture for pure proton signal - e.g Bicron BC510A (H/C=1.212) and BC-533 (H/C=1.96)
- Pure Carbon can be extracted for vA Xsection -e.g. $5 \times 5 \times 5 \mathrm{~m}^{3} \sim 125 \mathrm{t}$
$\lrcorner 1 E 21$ POT possible in one year (130 days)
- 30 times BNL-E734
- Require polarity change for v and $\bar{\nu}$

Sensitivity for Δs

」 Assurnjijons

- Similar Detection Efficiency to E734:
- 7.6\% for neutrino-N elastic
- 5.4\% for anti-neutrino-N elastic
- However with lower Q ${ }^{2}$ cut-off : $0.1 \mathrm{GeV}^{2}$
- Achievable with more uniform detector
- 25 times more statistics but pure proton only $1 / 6$
- Factor 2 reduction in statistical error
- Systematic control improvements to ~5\%
- E734 7.6\% dominated by Beam Flux and Nuclear Effects
- Possible to remove Nuclear Effects which could be larger in lower Q ${ }^{2}$ region

Comparison with E734

\lrcorner If Δs is the only paranneter to be
determined

- E734: $\Delta s=-0.10 \pm 0.08$
- J-PARC: $\Delta s=-0.10 \pm 0.03$
- But... Δs and M_{Λ} coupled

sil Better determination of Δs with Significantly improved Sytematics
- Separation with M_{A} might be Problematic

Fit	$G_{1}^{s}(0)$	F_{1}^{z}	$F_{2}^{s}(0)$	M_{A}	$\chi^{2} / N_{\text {DOP }}$
I	0	0	0	1.086 ± 0.015	$14.12 / 14$
II	-0.15 ± 0.07	0	0	1.049 ± 0.019	$9.73 / 13$
III	-0.13 ± 0.09	0.49 ± 0.70	-0.39 ± 0.70	1.049 ± 0.023	$9.28 / 11$
IV	-0.21 ± 0.10	0.53 ± 0.70	-0.40 ± 0.72	1.012 ± 0.032	$8.13 / 11$

Other Existing Efforts

\lrcorner Semij-Inclusive DJS

- DESY-HERMES and CERN-COMPASS
- Subject to FF Uncertainties: BELLE measurement of FF
- Limited in X-region
- RHIC Spin (Polarized pp Collider at BNL)
- Clear determination of u-bar and d-bar with W production, however limited in x-region
- Measurement of Ds requires charm-associated W production : small xsection
- FINeSSE experiment proposed at FNAL; BNL
- Extend to lower Q² (as we discussed)
- Seem to propose only neutrino measurements
- Only quadratic combination will be determined \rightarrow subject to two solution problem
- Subject to Nuclear Effects (Liq Scintillator)

Other physics topics to be investigated

\lrcorner Neutinino-Nuclear cross section

- Interesting by its own; important subject of Nuclear/Hadron Physics
- Also provide a better control in oscillation physics
- Weak-Mixing Angle measurements
- Low-Q2 determination of $\sin ^{2} \theta_{\mathrm{W}}$
- Interests triggered by NuTeV, Atomic PV, and PV in eN scattering
- Q: Testing EW? Or Testing Hadron Physics?

Summary

\lrcorner Strangeness Polarization in the Proton Δs is still missing key to resolve "Proton Spin Crisis"

- Impact of the better determination is huge in Particle/Nuclear Physics
- New measurement at J-PARC is considered

Let’s Work Together to solve one of the most important problems in Hadron Physics!

http://www.nucl.phy.titech.ac.jp/~sspin/

