Physics of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron

> Jen-Chieh Peng University of Illinois

> > and Shin'ya Sawada KEK

NP04 Workshop, Tokai, August 2-4, 2004

- Physics Issues
- Experimental Issues

High-Mass Dimuon Production with 50 GeV Proton Letter of Intent for the J-PARC Collaboration Abilene Christian University **Argonne National Laboratory Duke University KEK** University of Illinois at Urbana-Champaign Kyoto University Los Alamos National Laboratory Massachusetts Institute of Technology Tokyo Institute of Technology

Contact persons: J.C. Peng and S. Sawada

Physics with High-Mass Dimuons

- $\overline{d} / \overline{u}$ at large x
- Antiquark distributions in nuclei
- Quark energy loss in nuclei
- *u* quark at large *x*
- Drell-Yan angular distributions
- Drell-Yan with transversely polarized target
- $\overline{d} / \overline{u}$ via J / Ψ production
- J/Ψ nuclear dependence
- J/Ψ with transversely polarized target

Parton Distributions: Why Bother?

- Important features:
 - Perturbative and nonperturbative QCD
 - Essential input for all hard processes
- Challenges:
 - Spin and flavor structure
 - Small and large x behavior
 - Transition from high- Q^2 to low- Q^2
 - New types of structure functions and fragmentation functions
 - Models and lattice calculations for PDFs

Deep-Inelastic Scattering versus Drell-Yan

Drell-Yan

 $\sigma_{DY} \approx u(x_1) \overline{u}(x_2)$

Drell-Yan cross sections are well reproduced by NLO calculations

Dimuon Spectrometer for FNAL E605/772/789/866

800 GeV/c p + p/D $\rightarrow \mu^+\mu^- x$

Two components in the µ+µ- spectrum:

(a) Continuum: Drell-Yan process

(b) Vector mesons: J/ψ, Y

d / \overline{u} Flavor Asymmetry Measurement

$$J/\Psi, \Upsilon: \sigma^{pd}/2\sigma^{pp} \Box \frac{1}{2}(1+g_n(x)/g_p(x))$$

Comparison with models

Most models can explain $\overline{d} - \overline{u}$ No model can describe $\overline{d} / \overline{u}$ at large x !

d / \overline{u} at Large x using 50 GeV Proton Beam

$$\frac{d\sigma_{DY}}{dx_1 dx_2} \Box \frac{1}{s} \text{ at fixed } x_1, x_2$$

DY cross section is 16 times larger at 50 GeV than at 800 GeV

Spin and flavor are closely connected

Meson Cloud Model

 $u \uparrow \rightarrow \pi^0(u\overline{u}) + u \downarrow \qquad u \uparrow \rightarrow K^+(u\overline{s}) + s \downarrow$

Pauli Blocking Model

A spin-up valence quark would inhibit the probability of generating a spin-down antiquark

Instanton Model

$$u_L \to u_R d_R \overline{d}_L, \qquad d_L \to d_R u_R \overline{u}_L$$

Chiral-Quark Soliton Model

 $\Delta \overline{u}(x) - \Delta \overline{d}(x) > \overline{d}(x) - \overline{u}(x)$

Statistical Model

$$\Delta \overline{u}(x) - \Delta \overline{d}(x) \approx \overline{d}(x) - \overline{u}(x)$$

$$s(x) = \overline{s}(x)$$
?

Meson cloud model

 $p \to K^+ \Lambda_{(u\overline{s})(uds)}$

Barone et al.

Analysis of neutrino DIS data

Flavor Structure of the Helicity Distributions

Polarized Semi-Inclusive DIS (SIDIS)

 $\vec{e} + \vec{N} \rightarrow e' + h^{\pm} + X$

 Quark flavor is tagged by detecting π[±] and K[±]

- Five-flavor analysis $(\Delta u, \Delta d, \Delta \overline{u}, \Delta \overline{d}, \Delta s (= \Delta \overline{s}))$
- No indication for $\Delta s < 0$

HERMES SIDIS data

Flavor Structure of the Helicity Distributions

• No evidence for $\Delta \overline{u} \neq \Delta \overline{d}$

 Measurement of W[±] production at RHIC-spin would provide new information

Modification of Parton Distributions in Nuclei

EMC effect observed in DIS 1.2 BCDMS △ E87 1.1 ▲ E139 □ E140 0.8 Fe 0.7-0.01 0.1 0.001 X_X

How is the antiquark distribution modified in nuclei?

Modification of Antiquark Distributions in Nuclei Nuclear dependence of Drell-Yan

Sensitive to \overline{u} distribution in nuclei

Quark Bremsstrahlung in Nuclear Medium

- Landau-Pomeranchuk-Migdal (LPM) effect of medium modification for electron bremsstralung has been observed
- LPM effect in QCD remains to be identified
- Quark energy loss dE/dx is predicted to be proportional to L²
- Enhanced quark energy loss in traversing quark-gluon plasma

Quark energy loss in cold nuclei needs to be better measured

Quark Energy Loss in Cold Nuclei

Semi-inclusive DIS

(PRL 89 (2002) 162301)

Drell-Yan

(PRL 86 (2001) 4483)

Quark Energy Loss with D-Y at 50 GeV

Fractional energy loss is larger at 50 GeV

Possible to test the LPM effect from the A-dependence

PRL 90 (2003) 092302

Data indicate that *u* at large *x* is smaller than PDF parametrizations

$$\frac{data}{theory} \square (1-x)^{0.2}$$
19

u(x) at large x with D-Y at 50 GeV

SSA with Transversely Polarized Drell-Yan Analysing power (A_N) is sensitive to Sivers function $\sum e^2 f^{\perp}(x) f(x)$ A_N^L

$$\sum_{q=1}^{DY} \propto \frac{\sum_{q=1}^{q} e_q f_{1T}(x_q) f_{\overline{q}}(x_{\overline{q}})}{\sum_{q=1}^{q} e_q^2 f_q(x_q) f_{\overline{q}}(x_{\overline{q}})}$$

Sivers function in Drell-Yan is expected to have a sign opposite to that in DIS! (Brodsky, Hwang, Schmidt, hep-ph/0206259; Collins, hep-ph/0204004)

- Prediction by Anselmino, D'Alesio, Murgia (hep-ph/0210371) for a negative A_N .
- $|A_{N}|$ increases with rapidity, y, and with dilepton mass, M.

This measurement might be feasible at JPARC

Cos2Φ Dependence in Unpolarized Drell-Yan

Large cos2 Φ dependences have been observed in π – induced Drell-Yan

This azimuthal dependence could arise from a product of K_T -dependent distribution function h_1^{\perp} (Boer, hep-ph/9902255; Boer, Brodsky, Hwang, hep-ph/0211110)

In quark-diquark model, h_1^{\perp} is identical to Sivers function

No Cos2 Φ dependence for unpolarized p-p Drell-Yan has been reported yet (The effect from h_1^{\perp} is expected to be smaller)

- RHIC would provide unpolarized p-p Drell-Yan data too
- Unpolarized p-p Drell-Yan data at J-PARC would be very interesting

J/Ψ Production at 50 GeV

dominated by gluon-gluon fusion

At 800 GeV, J/ Ψ production is At 50 GeV J/ Ψ production is dominated by quark-antiquark annihilation

J/Ψ production at 50 GeV is sensitive to quark and antiquark distributions 23

Determination of $\overline{d} / \overline{u}$ Asymmetry via J / Ψ Production at 50 GeV

Ratio of $p + d \rightarrow J / \Psi$ over $p + p \rightarrow J / \Psi$ is sensitive to $\overline{d} / \overline{u}$

Nuclear Dependence of J/Ψ Production at 50 GeV

Schematic View in the Horizontal Plane

- Two vertically bending magnets with PT kick of 2.47 GeV/c and 0.5 GeV/c
- A tappered copper beam dump and Cu/C absorbers in the first magnet
- Tracking is provided by three stations of MWPCs and drift chambers
- Station 4 provides muon identification and tracking
- 2 x 10¹² 50 GeV protons/spill is requested

Simulation of Detector Acceptance

Expected Drell-Yan counts for a two-month p+d run at 50 GeV

- 2 x 10¹² protons/spill
- 50-cm long liquid deuterium target
- Assume 50 percent efficiency

Simulation of Detector Resolutions

Expected resolutions for Drell-Yan events

Summary

- We propose to study high-mass dimuon production at J-PARC with a high-rate spectrometer.
- A rich physics program in Drell-Yan and J/Ψ production can be pursued at J-PARC.
- 50 GeV proton beam with 2 x 10¹² protons per spill is requested.
- 30 GeV proton beam would also be interesting for studying the J/ Ψ production.