The *s***-wave** πN **Scattering Length** *From pionic deuterium, hydrogen, and* πN *data, using a unitarized coupled channel approach*

M. Döring, E. Oset, and M.J. Vicente Vacas

IFIC, University of Valencia, Spain

Affiliation

nucl-th/0402086

NP04 conference, August 2-4 2004, Tokai, Japan

Outline I

Part I:

Corrections to the pion–deuteron scattering length $a_{\pi^- d}$

- Faddeev Equations for Re $a_{\pi d}$
- Absorption and Dispersion
- The $\Delta(1232)$ resonance, crossed diagrams, and others
- Fermi corrections

Outline II

Part II:

The unitary chiral model for low energy $\pi N\text{-scattering}$

- Summary of the theory
- Threshold constraints in the (b_0, b_1) plane
- Consistency of the model, threshold versus low energy scattering
- Parametrization of the πN potential
- Isospin breaking

Isoscalar and Isovector Scattering Lengths

$$b_0 = \frac{1}{2} (a_{\pi^- n} + a_{\pi^- p})$$

$$b_1 = \frac{1}{2} (a_{\pi^- n} - a_{\pi^- p})$$

Isospin symmetry: πN scattering is a function of (b_0, b_1) only. Averaged masses.

versus

• No assumption of isospin symmetry: Physical masses. The elementary scattering lengths $a_{\pi N}$ are independent of each other. Isospin breaking.

Experimental threshold values

$$\begin{aligned} a_{\pi^- p \to \pi^- p} &= (883 \pm 2 \text{ stat.} \pm 10 \text{ sys.}) \cdot 10^{-4} m_{\pi}^{-1} \\ a_{\pi^- p \to \pi^0 n} &= -1280(60) \cdot 10^{-4} m_{\pi}^{-1} \\ a_{\pi^- d} &= (-252 \pm 5 \text{ stat.} \pm 5 \text{ sys.} + i \ 63(7)) \cdot 10^{-4} m_{\pi}^{-1} \end{aligned}$$

Data: Schroeder et al. PLB 469, Sigg et al. NPA 609, Sigg et al. PRL 75, Schroeder et al. EPJC 21

The three body scattering problem requires an analysis of corrections to a_{π^-d} . With these modifications, the constraint from a_{π^-d} can be used for an exact determination of b_0 and b_1 . The π^-d scattering length is sensitive to b_0 .

Multiple Scattering in the πd **system**

(b_0, b_1)	(-0.0001, -0.0885)	(-0.0131, -0.0924)
IA	$-2.14 \cdot 10^{-4}$	-0.02793
Double Scattering	-0.02527	-0.02725
Triple Scattering	0.002697	0.003489
4– and higher	$1.06 \cdot 10^{-4}$	$5.4 \cdot 10^{-5}$
Solution Faddeev	-0.02268	-0.05163
Exp. Re a_{π^-d} :	-0.0252 ± 10	-0.0252 ± 10

Units $[m_{\pi^-}^{-1}]$

Faddeev Equations

Faddev equations:

$$T_{p} = t_{p} + t_{p}GT_{n} + t_{p}^{x}GT_{n}^{x}$$

$$T_{n} = t_{n} + t_{n}GT_{p}$$

$$T_{n}^{x} = t_{n}^{x} + t_{n}^{0}GT_{n}^{x} + t_{n}^{x}GT_{n}$$

$$T_{\pi^{-}d} = T_{p} + T_{n}$$

Folding with the deuteron wave function:

$$a_{\pi^{-}d} = \frac{M_d}{m_{\pi^{-}} + M_d} \int d\mathbf{r} \; |\varphi_d(\mathbf{r})|^2 \hat{A}_{\pi^{-}d}(r)$$

• The Faddeev eqns. relate the elementary scattering lengths $a_{\pi N}$ to $a_{\pi^- d}$:

$$a_{\pi^{-}d} = f(a_{\pi^{-}p}, a_{\pi^{-}n}, a_{\pi^{0}n}, a_{\pi^{-}p \to \pi^{0}n})$$

Absorption and Dispersion

Absorption amplitude I

Koltun–Reitan Hamiltonian:

$$H_I = 4\pi \left[\frac{\lambda_1}{\mu} \,\overline{\Psi} \vec{\phi} \vec{\phi} \Psi + \frac{\lambda_2}{\mu^2} \,\overline{\Psi} \vec{\tau} (\vec{\phi} \times \partial^0 \vec{\phi}) \Psi \right]$$

Yukawa–type *p*–wave coupling:

$$\vec{\sigma}\mathbf{q}'\;\vec{\sigma}\mathbf{q}=\mathbf{q}'\cdot\mathbf{q}+i\left(\mathbf{q}'\times\mathbf{q}\right)\vec{\sigma}$$

Amplitude

$$T = i \int \frac{d^4 l}{(2\pi^4)} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \int \frac{d^3 \mathbf{q}'}{(2\pi)^3} F_d(\mathbf{q}+\mathbf{l}) F_d(\mathbf{q}'+\mathbf{l})$$

$$= \frac{1}{q^2 - m_\pi^2 + i\epsilon} \frac{1}{q'^2 - m_\pi^2 + i\epsilon} \frac{1}{l^0 - \epsilon(\mathbf{l}) + i\epsilon} \frac{1}{l'^0 - \epsilon(\mathbf{l}') + i\epsilon}$$

$$\sum t_1 t_2 t_{1'} t_{2'} (\vec{\sigma} \mathbf{q}' \vec{\sigma} \mathbf{q})$$

Absorption amplitude II

Additional diagrams in absorption

Results from Absorption I

• Real and imaginary contributions from absorption to $a_{\pi^- d}$ for three different approaches. All values in $10^{-4} \cdot m_{\pi^-}^{-1}$:

	(App1)	(App2)	(App3)
Im a_{π^-d} , <i>s</i> -wave	57.4 ± 5.7	idem	idem
Im $a_{\pi^- d}$, <i>d</i> —wave	2.21 ± 0.33	idem	idem
Im $a_{\pi^-d} s + d$ —wave	59.6 ± 5.3	idem	idem
Im a_{π^-d} experimental	63 ± 7	idem	idem
$\Delta \operatorname{Re} a_{\pi^- d}$, <i>s</i> -wave	19.3 ± 8.2	13.6 ± 8.9	2.4 ± 4.3

 $\Delta \text{ Re } a_{\pi^- d}, \ d - \text{wave, absorption} = 0.18 \cdot 10^{-4} \cdot m_{\pi^-}^{-1}.$

 $\Delta a_{\pi^- d, \mathbf{q}' \times \mathbf{q}} = (0.13 - i \ 0.38) \cdot 10^{-4} \cdot m_{\pi^-}^{-1}$

Results from Absorption II

Crossed Diagrams

Fermi motion

● p-waves

$$\mathcal{F} = b_0 + b_1(\tilde{\mathbf{t}} \cdot \vec{\tau}) + [c_0 + c_1(\tilde{\mathbf{t}} \cdot \vec{\tau})] \mathbf{q'} \cdot \mathbf{q}$$

Range parameter

$$a_{\pi^{-}p}(\omega) = a^{+} + a^{-} + (b^{+} + b^{-}) \mathbf{q}^{2}$$

$$a_{\pi^{-}n}(\omega) = a^{+} - a^{-} + (b^{+} - b^{-}) \mathbf{q}^{2}$$

Single Scattering: $57 \pm 9 \cdot 10^{-4} \ m_{\pi}^{-1}$

Double Scattering	Bonn		Paris	
$[10^{-4} \cdot m_{\pi}^{-1}]$	S	d	S	d
leading $s - p$	-30	0	-2	0
subleading $s-p$	13	9	11	13
p-p waves	-3	2	-4	2
Sum	5 ± 15			

Summary of Corrections to a_{π^-d}

Contribution	Value in $10^{-4} \cdot m_{\pi^-}^{-1}$	Source
$(\pi^- p, \gamma n)$ double scattering	-2	Ericson et al., PRC 66
Form factor/ Non-locality	23 ± 15	Ericson <i>et al.</i> , PRC 66 Baru <i>et al.</i> , Phys. At. Nucl. 60 Tarasov <i>et al.</i> , Phys. At. Nucl. 63
Non-static	11 ± 6	Baru <i>et al.</i> , Phys. At. Nucl. 60 Tarasov <i>et al.</i> , Phys. At. Nucl. 63 Fäldt, Phys. Sc. 16
virtual pion scattering	-7.1 ± 1.4	Beane, Meissner <i>et al.</i> , PRC 57
Dispersion	2.4 ± 4.3	Present study
Crossed π and $\Delta(1232)$	14.6	Present study
Fermi motion, IA	57 ± 9	Present study
Fermi m. double scatt. (s-p,p-p)	5 ± 15	Present study
Sum	104 ± 24	

Constraints on Isoscalar and Isovector

• $a_{\pi^- d} = f(a_{\pi N,i}) + \text{corr.} + (\text{th.+exp. err.}) \simeq g(b_0, b_1)$

Theory I

- Coupled Channel approach with $\pi^- p$, $\pi^0 n$, $\pi^+ p$.
- Lowest order chiral meson baryon Lagrangian Inoue, Oset, Vicente Vacas, NPA 635 :

$$\mathcal{L}_{\pi N}^{(1)} = \operatorname{Tr}\left[\overline{B} \ i \ \gamma^{\mu} \ \frac{1}{4f^2} \left((\phi \partial_{\mu} \phi - \partial_{\mu} \phi \phi) B - B(\phi \partial_{\mu} \phi - \partial_{\mu} \phi \phi) \right) \right]$$

Leads to the kernel

$$V_{ij}(\sqrt{s}) = -C_{ij} \frac{1}{4f_{\pi}^2} \left(2\sqrt{s} - M_i - M_j\right) \sqrt{\frac{M_i + E_i(\sqrt{s})}{2M_i}} \sqrt{\frac{M_j + E_j(\sqrt{s})}{2M_j}}$$

• Isoscalar term from $\mathcal{L}_{\pi N}^{(2)}$ Fettes, Meissner, NPA 679 :

$$V_{ij} \to V_{ij} + \delta_{ij} \left(\frac{4c_1 - 2c_3}{f_\pi^2} \ m_\pi^2 - 2c_2 \ \frac{(q^0)^2}{f_\pi^2} \right) \frac{M_i + E_i \left(\sqrt{s}\right)}{2M_i}$$

Theory II

... to be plugged into the Bethe–Salpeter Equation:

- Free Parameters:
 - $\, {}_{\bullet} \,$ Subtraction constant α from the loops
 - Real part of the $\pi N \to \pi \pi N$ loop
 - 2 from combinations of chiral coefficients c_i from $\mathcal{L}_{\pi N}^{(2)}$
 - Sometimes: Damping factor for quadratic isoscalar, $e^{-\beta^2[(q^0)^2 m_\pi^2]}$.
 - Sometimes: three different α in $\pi^- p$, $\pi^0 n$, $\pi^+ p$ loops (isospin breaking)
- Fitted Data: a_{π^-p} , $a_{\pi^-p \to \pi^0 n}$, a_{π^-d} (via Faddeev), and πN scattering at finite energies.
- Consistency by Extrapolation, Potential by global fit.

Global fit and Extrapolation

$$(b_0, b_1) = (-28 \pm 40, -881 \pm 48) \cdot [10^{-4} m_{\pi}^{-1}]$$

Finite Energy Behavior

• Re and Im of s-wave, I = 1/2, I = 3/2 channels

Data: Arndt et al., nucl-th/0311089, FA02 partial wave analysis

Summary

- πd Scattering is a crucial ingredient in the determination of (b_0, b_1) .
- 1–loop corrections: Dispersion, $\Delta(1232)$, crossed diagrams, WFC.
- Im $a_{\pi^- d}$ matches experimental result (cut-off independent).
- Corrections come mainly positive, dispersion is small (literature: larger, negative.
- Large additional attraction from corrections.
- Chiral unitary model: s-wave from $\mathcal{L}_{\pi N}^{(1)}$, $\mathcal{L}_{\pi N}^{(2)}$.
- Inclusion of the $\pi N \to \pi \pi N$ loop.
- Bethe–Salpeter equation gives kernel for πN interaction.
- Fitted: Pionic hydrogen (shift and width), π -deuterium via Faddeev parametrization and low energy πN scattering data.

Conclusions

- Threshold gives quite negative values for (b_0, b_1) . From extrapolation: remaining mismatch between threshold and finite energy πN scattering \rightarrow uncertainties in phenomenological extraction of partial waves at very low energies ?
- Parametrization of the πN potential found up to \sqrt{s} around 1300 MeV.
 Good match at energies way beyond the fitted region.
- Chiral coefficients in agreement with χ perturbative calculations with Δ explicit.
- Isospin breaking from mass splitting included in the CC approach. Breaking from this source gives 50% of the one of other studies. Breaking effects from other sources accessible in the model → There is no partial wave analysis free from isospin assumptions.

Parameter Values

	Global Fit	Extrapolation	No damping
fi tted data (\sqrt{s})	1104–1253 MeV + threshold	1104–1253 MeV	1104–1180 MeV + threshold
χ^2_r	$51/(2 \cdot 10 + 3) \simeq 2.2$	$24/(2 \cdot 10) = 1.2$	$33/(2 \cdot 6 + 3) = 2.2$
$\alpha_{\pi N}$	-1.143 ± 0.109	-0.990 ± 0.083	-1.528 ± 0.28
$2c_1 - c_3 [{\rm GeV}^{-1}]$	-1.539 ± 0.20	-1.000 ± 0.463	-0.788 ± 0.14
$c_2 [{\rm GeV}^{-1}]$	-2.657 ± 0.22	-2.245 ± 0.45	-1.670 ± 0.07
eta [MeV $^{-2}$]	$0.002741 \pm 1.5 \cdot 10^{-4}$	$0.002513 \pm 3.3 \cdot 10^{-4}$	No β
$\gamma \ [10^{-5} \cdot m_{\pi}^5]$	5.53 ± 7.7	-10 ± 6.1	10 ± 10
$\chi^2(a_{\pi^-p\to\pi^-p})$	3	[91]	4
$\chi^2(a_{\pi^-p\to\pi^0n})$	< 1	[2]	< 1
$\chi^2(a_{\pi^-d})$	8	[6]	4

• Fettes, Meissner, NPA 679:

$$2c_1 - c_3 = -1.63 \pm 0.9 \text{ GeV}^{-1}$$

 $c_2 = -1.49 \pm 0.67 \text{ GeV}^{-1}.$

Size of the isoscalar:

	Global fit	Extrapolation
$b_c \ [10^{-4}m_{\pi}^{-1}]$	-336	-434
$b_0 \ [10^{-4}m_\pi^{-1}]$, generated	442	396
$b_0 \ [10^{-4} m_\pi^{-1}]$, fi nal	-28	-46

Parameter Values