Beam

Takashi Kobayashi IPNS, KEK

Contents

Neutrino beam (request for facility) Neutrino facility Overview Recent status Schedule (introduction for following talks) Neutrino beams and strategy in LOI hep-ex/0106019(June 2001)

- Three types of beams
- WBB: first ~1year for ∆m² rough determination
- NBB or OAB: Precision/high sens. measurement of disapp./app. at osc. max.
- NBB: neutrino interaction in near site
- Decay pipe: 80m from target

Three Beams

Current beam/strategy

 \rightarrow Discard WBB option \rightarrow smaller decay pipe Only OAB for long term LBL measurement Factor 2~3 higher flux than NBB \rightarrow Decay pipe : 80m \rightarrow 130m for higher flux $> \sim 40\%$ increase in peak flux > Adjustable OAB angle $X \pm 0.5$ deg. > X still to be decided later for max. sensitivity Deadline: ~1year \geq NBB only for v int. study at near site Shoot SK and possible HK site (10km=2deg) apart) w/ the same beam line

Request for facility

of CC events of various beams

OAB: 2200 CC int./22.5kt/yr (2degree)

Peak energy can be tuned by changing mag. field(NBB) or angle(OAB)

Decay pipe len 80m→130m

40% increase in peak flux

Neutrino Facility

All drawings are preliminary

Recent changes have not been reflected in the drawings yet

Overview of neutrino facility

Beam line tunnel Proton beam transport Preparation section Arc section (Super cond.) Final focusing ➤Target/Horn system • NBB/OAB changeable > Decay pipe Cross w/ 3NBT Target-Dump: 130m • "Trapezoid" shape >Pit for muon monitor >Beam dump >Near detector @280m in JAERI site •@~2km

Specification

Beam kinetic energy	50GeV
Protons/pulse	3.3x10 ¹⁴
Beam current	15 _μ Α
Beam power	750kW
Extraction	Single turn fast extraction
Micro structure	8bunches/9 RF buckets
Bunch spacing	598ns
Spill width	~5 _µ s
Cycle	~3.64sec
Rep rate	0.275Hz
Proton beam emittance	6.1_{π} mm.mrad
Physical acceptance	60_{π} mm.mrad
Beam loss(proton transport)	1W/m
Curvature of arc	110m
Decay pipe length (target-dump)	130m
Distance to near detectors	280m/~2km
Distance to SK	~295km
Target-SK beam decline	-1.25deg

Recent progress

- Neutrino facility construction group OFFICIALLY formed in KEK (Apr.2001)
- 50GeV beam abort still to be settled
- > Primary proton beam optics almost fixed \rightarrow Ichikawa's talk
- Design of norm. cond. mags started (Kusano)
 - Preparation section/Final focusing
- ➢ Design of super conducing magnets → Nakamoto's talk
- Conceptual design of low T facility done.
- > Optimization of target/horn system started \rightarrow Hayato/Ichikawa's talk
- ➢ Radiation shielding design → Oyama's talk
- Decay pipe
 - decide to fill He
 - \succ heat dissipation simulated \rightarrow hayato's talk
 - Common decay pipe design for SK and HK
 - Started design w/ company
- ➢ Long baseline GPS survey finished → Noumi's talk
- Plan to include 2km detector in the same budget request
- Aiming to submit budget request in 2002
 - → get answer by the end of 2002.

Beam (50GeV) abort (fast)

Position/scheme of beam abort not settled yet.

This may give significant modification on v facility design depending on solution Urgent task

Design of normal conducting magnets

Magnets for preparation section

E.Kusano

Summery										
	Dip	ole		Steering						
Name	PD1MIC	PD2	PH1&PH2MIC	PV1&PH3	PV2					
Fiel d [T]	2	2	2	2	2					
Gap(V)[mm]	139	126	44 & 54	104 & 95	47					
Gap(V)[mm]	180	160	100	150	100					
Gap(H)[mm]	120	101	108 & 145	70 & 41	79					
Gap(H)[mm]	160(250)	160	200(300)	150(300)	100(200)					
Len[mm]	3000	3000	1000	1000	1000					
[A]	250 0	2500	2000	2000	2000					
Turn	140	128	96	144	100					
Voltage[V]	220	140	70	100	70					
Power[kW]	450	350	140	200	140					
Width[mm]	1500	1300	1400	1100	1000					
Height[mm]	700	500	500	500	500					
Length[mm]	3600	3400	1600	1400	1500					
Weight[ton]	26	16	10	7	4					
•										
Name	PQ1MIC	PQ2A&BMIC	PQ3A&B	PQ4A&B&5	Fotal power[kW					
Field[T]	1	1	1	1						
Gap(V)[mm]	200	200	200	150						
Gap(V)[mm]	200	200	200	150						
Gap(H)[mm]										
Gap(H)[mm]										
Len[mm]	3000	2000	2000	2000						
Current[A]	2500	2500	2500	2000						
Turn	144	144	160	160						
Voltage[V]	220	100	100	60						
Power[kW]	550	250	250	120	2450					
Width[mm]	1280	1280	1280	1200						
Height[mm]	1280	1280	1280	1200						
Length[mm]	3500	2500	2500	2500						
WeightIton	25	16	16	16						

Low T facility

Gas in decay volume

Conceptual design of decay pipe

Have to build in 2002 at least the part beneath 3NBT

Comparison of pipe shape

Trapezoid pipe is best
Cooling scheme to be
developed.

Shape	Cost	工場製作 施工性	現地施工 作業性	Total
Å.	1.2	×	Δ	Δ
楕円(上面,下面は平板)	1.3	Δ	Δ	×
四角	1. 0	0	0	0

Decay pipe (3NBT cross)

SK and Possible HK site

Mile stones/Schedule(Summary)

		2001			1	2002				2003				2004				2005					006		2007				
Japane	ese Fiscal Year	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1
				-					1														1						1
	3NBT											Civil	cons	truc	tion														
50GeV	civil construction							¥	_	-	<u> </u>		╞╱																
							1	st t	erm	n (ar	φun	d fa	st	ext.)														
Decay pipe															ſ														
Fix spe	cification			-																									
Tender						0										1													
Manufa	cture																												
Lav und	derground																												
Budget requ	iest		1.0013																										
Submit				-																									
Get ans	swer		1.1.	-																									
Civil constru	uction			-			Fng	De	sign																				
Arc				-																									
Decay	pipe(under 3NBT)														94 (CONSULTING CON														
FF				-								Constantion of												1					
Target	station			-																									
Rest of	decay pipe																							1					
muon n	it																					0.836							
Near de	etector hall																												
Environ	ment			E																	S POSILONELS POSIL								
Super condu	ucting magnet(R&D)																												
Concer	atual design																												
Build pr	rototype magnets																												
Prepara	tion for testing																												
Test			1																										
Mass produc	stion of SC mag									-																			
Manufa																													
Installti	00																												
Adjustr	ent tunning			-	-																							<u> </u>	-
Agusti		1	1 1	-																									
Chiogenic f	acility			-	-					-																		-	
		Could Loop			-																								
	v tender purchase				+	1						<u> </u>	1											<u> </u>	<u> </u>				
Compre	assor tendor purchase					-																						-	-
Buffer	LigN2 tank tondor ruro	hace			+					-		<u> </u>											+						
Davala	LIGINZ LATIN LETTUER, PURC	lase			+	1						<u> </u>	1												<u> </u>				
Installat	tion				-	-				-																			
					+	-		+																					
Aajustn	ient, tunning	D.S					1	1	1		1	L	1			1	1		1	1	1		1	1	I				

Not all items listed. We aim to complete construction by the end of JFY2006