

1

High–Mass Dimuon Experiment at the New 50–GeU Proton Synchrotron

Shin'ya Sawada (KEK)

High-mass Dimuon Production

- Work with Jen-Chieh Peng, Junsei Chiba.
- Based on FNAL E866 experiment
- "Expression of Interest for Nuclear/Hadron Physics Experiments at the 50-GeV Proton Synchrotron" (KEK Report 2000-11)
- Hep-ph/0007341
- Interests also from FNAL-E866 members:
 - Don Geesaman, Roy Holt, Paul Reimer, Chuck Brown, Carl Gagliardi, Ron Ransome, Ron Gilman, Don Isenhower

High-Mass Di-muon Production

- M(μ⁺μ⁻) > 1GeV
- Drell-Yan and quarkonium
- Physics motivation
 - at large Bjorken-x using the Drell-Yan process
 - dbar/ubar asymmetry in the nucleon sea
 - Nuclear dependence of the Drell-Yan cross sections
 - Antiquark enhancement in heavy nuclei?
 - » Cf.) EMC effect
 - Partonic energy loss effect
 - » Cf.) Recent PHENIX data
 - » 50GeV PS can measure more sensitively at comparable energy/pt region than FNAL experiments.
 - Scaling violation in the Drell-Yan process
 - Nuclear dependence of J/ ψ & ψ ' production
 - Key to understand suppression in relativistic heavy ion collisions
 - Spin-dependent antiquark distribution at large x

Drell-Yan process

• The Drell-Yan process: $pN \rightarrow \mu^+\mu^-X$

• Directly sensitive to antiquark distributions.

$$\sigma^{pN} \propto \sum_{i} e_i^2 \Big[q_i(x_1) \overline{q}_i(x_2) + \overline{q}_i(x_1) q_i(x_2) \Big]$$

- dominated by the first term if $x_1 >> x_2$
 - $q \sim (1-x)^3$, sea ~ $(1-x)^7$

• Useful kinematic relations:

$$\tau = x_1 x_2 = \frac{M^2}{\frac{S}{S}}$$
$$x_F = p_{\parallel}^{\gamma} / p_{\parallel}^{\gamma, \max} = x_1 - x_2$$

Dec 11, 2001

Drell-Yan cross section at 50 GeU

• At 50 GeV, Drell-Yan cross sections are larger than at higher energies. The focus is on the large x region.

d-bar/u-bar at large Bjorken-x

- u-bar = d-bar??
- Gottfried Sum Rule

$$S_{G} = \int_{0}^{1} \left(F_{2}^{p}(x) - F_{2}^{n}(x) \right) / x dx$$

= $\frac{1}{3} + \frac{2}{3} \int_{0}^{1} \left(\overline{u}(x) - \overline{d}(x) \right) dx$
= $\frac{1}{3}$ (if $\overline{u} = \overline{d}$)

- New Muon Collaboration (NMC) obtains $S_G = 0.235+-0.026$
 - Significantly lower than 1/3!
 - → u-bar != d-bar !!

d-bar/u-bar at large Bjorken-x

 Compare Drell-Yan yields from nuclear targets (Liquid H₂ and D₂) and extract d-bar/u-bar.

$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{x_1 >> x_2} \approx \frac{1}{2} \left[1 + \frac{\overline{d}(x)}{\overline{u}(x)} \right]$$

- Previous results
 - NA51 found d-bar/u-bar = 0.51+-0.04+-0.05 at x = 0.18
 - FNAL-E866 measured the ratio at x<0.33
 - Large discrepancy between various parton distribution functions especially at large x region.
- \rightarrow Need data at large x.

d-bar/u-bar at large Bjorken-x

- The Drell-Yan cross section ratios for p+p versus p+d lead to a direct measurement of the d-bar/u-bar asymmetry as a function of Bjorken-x.
- The estimated statistical error with the 50 GeV PS is shown.
 - Assumptions:
 - 60 days running period each for pp and pd measurements
 - Net efficiency of 0.5
 - 1x10¹² protons/3sec
 - 20inch=50.8cm thickness of liquid hydrogen/deuterium target

Scaling violation in the Drell-Yan

• Scaling: the cross section is a function of $\tau = x_1 x_2 = M^2/s$.

 $\frac{d^2\sigma}{dM^2dx_F} = \frac{4\pi\alpha^2}{9sx_1x_2}\sum_i e_i^2 \left[q_i(x_1)\overline{q}_i(x_2) + \overline{q}_i(x_1)q_i(x_2)\right]$

- When QCD corrections (NLO calculations) are introduced, the scaling violation is expected.
- DY scaling violation has not been established due to limited kinematical range of existing data.

 $p A \rightarrow \mu^{+}\mu^{-} X$ 10 108 m³d²ø/dx_rdm (nb*GeV²/nucleon) x 10' x 10⁶ x 10⁵ GaV (RHIC) x 10⁴ 0.080.090.1 0.2 0.3 0.4 0.5 0.6 $\sqrt{\tau}$

Nuclear dependence of dilepton production

- Basic question is "parton distribution in nuclei vs parton distribution in nucleon".
- EMC effect → antiquark sea might be enhanced in nuclei.
 - Drell-Yan process can probe.
 - Cross section ratio (p+A/p+d)
 - Poor statistics of E772 at large x cannot see any effects.
 - DY measurement at 50GeV will be able to provide new information.

- High energy partons traversing nuclei can suffer energy loss via
 - Elastic scattering from target partons
 - Radiation (gluon bremsstrahlung)
- BDMPS suggests
 - Partonic enrgy loss in QGP is predicted to be much larger than in cold matter.
 - Radiative energy loss is predicted to be proportional to L², where L is the path length of nuclear matter traversed by the partons. Note that the conventional understanding says ΔE is linearly dependent on L. One could probably distinguish the L-dependence from L²-dependence.
- Previous efforts, such as Vasiliev et al. (Phys. Rev. Lett. 83 (1999) 2304), have not derived a countable value (only an upper limit).
- Recent publication (PRL 86 (2001) 4483) by FNAL-E772 says -dE/dz = 2.32
 +- 0.52 +- 0.5 GeV/fm. Large! Really?
- RHIC results suggest small dE/dz??
- The fractional energy loss ∆E/E will be larger at 50 GeV PS, and study on partonic energy loss is expected to be much more sensitive.

Dec 11, 2001

Partonic energy loss with the Drell–Yan process at 50 GeV

- $\Delta x_1 \sim -\kappa_3 / S A^{2/3}$ (Bayer et al., NPB484, 265 (1997)) (2)
- Small s --> large sensitivity
- Small x₁ not measured --> No shadowing effect

(a) x₁ distribution
Solid curve: expected p+d spectrum for a 60-day run at 50 GeV
Dashed (dotted, dash-dotted) curve:
expected p+W spectra assuming a partonic energy loss rate of 0.1 GeV/fm (0.25 GeV/fm, 0.5 GeV/fm)

Calculated from eq.(1) (b) x₁ distribution Solid circle: expected statistical errors for (p+W)/(p+d) ratios in 60-day run for p+W and p+d each Solid (dashed, dotted) curve: Partonic energy loss rate of 0.1 GeV/fm (0.25GeV/fm, 0.5 GeV/fm)

Calculated from eq.(2) Dec 11, 2001

S. Sawada @ NP01

12

Partonic energy loss with the Drell–Yan process at 50 GeV

- Expected A dependence
 - 60 days run for each target

Solid circles:

Expected (p+A)/(p+d) ratio assuming a partonic energy loss rate of 0.25 GeV/fm with eq.(1)

Open squares:

That with eq.(2)

J/ψ & ψ^{\prime} production

tota

- J/ ψ at 800 GeV vs J/ ψ at 50 GeV
 - Gluon-gluon annihilation dominates at 800 GeV, while quark-antiquark annihilation does at 50 GeV.
 - Suitable for study of antiquark distribution.
 - Can be used to distinguish various PDFs.

- FNAL E866 and P906 spectrometers are our starting point.
 - Vertical bending magnet + hadron absorbers + detectors (drift chambers, hodoscopes, RICH, muon detectors).
 - Half-opening angle of the muon pair is proportional to $1/\gamma ==>$ enlarge the magnet aperture

• Preliminary plan of the spectrometer setup

- Proton beam
 - 50GeV, ~10¹² /sec
- Target
 - Liquid hydrogen/deuterium targets (~20 inch long and ~3 inch wide) plus nuclear targets.
- Spectrometer magnet
 - p_t=M/2, M=3-8 GeV, then ~8 Tm.
- Copper beam dump inside the magnet
- Absorbers
 - Copper and carbon absorbers inside the magnet.
- Detectors
 - Position detectors, trigger detectors, and pid.
 - Singles rate < ~50MHz with ~10k channels --> need more background simulation and adjustment of the absorbers
- Total length (from target to the last detector station) ~ 15m

Mass vs x_F (a) and mass vs x₂ (b) distribution of accepted DY events.

- Expected statistics for a Drell-Yan measurement with 60 days of pp run.
 - Left: mass distribution; Right: x2 distribution
 - Hatched area: with 4.2GeV<M<8GeV

- There are interesting physics topics to be studied by high-mass dilepton measurements.
 - $\overline{d}/\overline{u}$ at large Bjorken-x using the Drell-Yan process
 - Nuclear dependence of the Drell-Yan cross sections
 - Antiquark enhancement in heavy nuclei?
 - Partonic energy loss effect
 - Scaling violation in the Drell-Yan process
 - Nuclear dependence of $J/\psi \& \psi'$ production
 - Key to understand suppression in relativistic heavy ion collisions
 - Spin-dependent antiquark distribution at large x
- The spectrometer would be like FNAL E866 or P906, though there are many to be considered.

Dec 11, 2001