Feasibility of Production and Detection of Relativistic Hypernuclei

Atsushi Sakaguchi (Osaka University)

- Status of Hypernuclear Physics
- Value of Relativistic Hypernuclei
- Considerations on Experiment at 50-GeV PS
- Prospects on Single-Λ Hypernuclei
- Possibility of Double-Λ Hypernuclei
- Summary

Status of Hypernuclear Physics

Structure of Single- Λ Hypernuclei

• Hypernuclei produced by various beams

 (K^-,π^-) reaction

- Transfer strange-quark to nuclei
- Small momentum transfer \Rightarrow Low-spin states ($\Delta L=0$)

 (π^+, K^+) reaction

- s and s-bar associate production \Rightarrow s-quark stays in nuclei
- Larger momentum transfer \Rightarrow High-spin states (Δ L \gg 1)

(e,e'K) and (γ,K) reaction

- s and s-bar associate production
- Spin-flip amplitude \Rightarrow excite unnatural parity states

Classification of hypernuclear states

• Theoretical predictions are very helpful to identify states

Gross feature of Λ -nucleus and ΛN interaction

- High-resolution spectroscopy
 High-resolution spectrometers
 - $\Delta Ex \sim 1 \text{ MeV} \implies 100 \text{ keV}$
 - γ-ray spectroscopy
 - $\Delta E \sim 1 \text{ keV}$

Precise measurement of nuclear structure

• Theoretical works are very helpful

Microscopic YN interactions based on NN interaction and $SU_F(3)$ symmetry

Effective interaction in hypernuclei

Details of Λ -nucleus and ΛN interaction

Baryon-Baryon Weak Interaction in Hypernuclei

- Hypernuclei decay with weak processes Mesonic decay mode
 - π^- or π^0 emission

 ${}^{4}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He} + \pi^{0}$

- ${}^{4}{}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He} + p + \pi^{-}$
- Analogous with Λ free decay

" Λ " \rightarrow n + π^0 or p + π^-

Non-mesonic decay mode

- New decay mode only in hypernuclei
- Weak ΛN interaction

" Λ " + "N" \rightarrow p + n or n + n

• Experimental data

Lifetime measurement $\Gamma = \Gamma m + \Gamma nm \Delta \Gamma / \Gamma \sim 5\%$

Branching ratios Γnn, Γpn, etc.

still have large ambiguity

Spin and isospin structure of ΛN weak interaction

Production of Double- Λ Hypernuclei

- S=–2 hypernuclei
 - Double- Λ hypernuclei
 - $\Lambda\Lambda$ interaction
 - Decay by weak interaction
 - Ξ hypernuclei
 - Ξ bounds in nuclei
 - **EN** interaction
 - $\Xi N \rightarrow \Lambda \Lambda$ conversion

Quite important to study BB interaction systematically

• Production of S=–2 hypernuclei

 (K^-, K^+) reaction

- Direct production of Ξ^- hypernuclei and decay to $\Lambda\Lambda$
- Quasi-free Ξ^- production goes to Ξ^- atom then $\Lambda\Lambda$

Hard to discuss structure only from formation process

Detection of double- Λ hypernuclei

• Sequential mesonic decay

$${}^{4}{}_{\Lambda\Lambda}H \rightarrow {}^{4}{}_{\Lambda}He + \pi^{-}$$

$${}^{4}{}_{\Lambda}He \rightarrow {}^{3}He + p + \pi^{-}$$

• Emulsion technique is quite powerful

High position resolution and high efficiency

Only 3(4) events obtained in 40 years

Need more data and clear identification of created hypernuclei

Σ Hypernuclei Σ-N Interaction K⁻ Nuclei

Value of Relativistic Hypernuclei

Production of Hypernuclei in Relativistic Heavy-Ion Collisions

- Originally proposed to produce multi-Λ hypernuclei Relativistic heavy-ion collisions
 - See projectile fragment region

Λ

• Theoretical predictions

M. Sano and M. Wakai, Prog. Theor. Phys. Suppl. 117 (1994) 99

Primary process

- Λ particle coalescence with fragment
- (⁴He, ⁸Be, ¹²C, ...)+ $\Lambda \rightarrow {}^{5}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Be, ${}^{13}_{\Lambda}$ C, ... Typical cross section is 1µb
- (Other fragments)+ Λ , typically 0.1µb

Originally proposed mechanism works fine, but ...

Secondary process

• (π, K) and (K, π) reactions on fragment

 (π, K) reaction dominant

- Typical cross section is 0.1µb
- (K[−],K⁺) creates Ξ[−] in nuclei

Similar boundary condition with meson-beam experiment

Fragment 1b

Single- Λ 1µb

Double- Λ 1pb

??

Energy dependence of cross section

- Primary coalescence process stay constant
- Secondary process increase with beam energy
- Change over around 10 GeV/u

Fig. 6. Beam energy dependence of ⁶/₄He production cross section in ¹²C+¹²C collisions.

• $\Delta Z_{\text{VTX}} \sim 1 \text{ cm} \implies \Delta \tau < 1 \%$ $\beta \gamma c \tau \sim 200 \text{ cm}$

- Complete decay branch
 - Mesonic and non-mesonic modes at the same time
 - Detect decay particles efficiently

Inverse kinematics

- Size of hypernuclei
- n- or p-rich hypernuclei
 - Fragment (target) may be unstable

Considerations on Experiment at 50-GeV PS

Beam

- Light heavy-ion (say ¹²C, ¹⁶O, ²⁸Si, etc.) to be available in near future, I hope
- Energy: 25 GeV/u
 - βγcτ (Λ) ~ 2.1m
- Intensity: $10^9 \sim 10^{10}$ ion/burst (<200W)
- Good emittance

assume $6\pi \text{ mm} \cdot \text{mrad} \Rightarrow$ a few mm and a few mrad

Production Target

• 5% reaction length for heavy-ion beam

 12 C: about 1 g/cm²

Multiple scattering of fragment negligible (~0.05mrad)

• 50 ~ 500 hypernuclei/burst at production target

Separation of Hypernuclei from Beam

• Magnets and collimators

Similar with hyperon beam-line or K⁰ beam-line

But, we have to see absolute 0 degree !

- Strong magnetic field and beam dump
 - $4T \times 4m$ super-conducting magnet

Beam dump at exit

 $2T \times 4m$

• Profile at exit of SC dipole

A toy model calculation

14.5 GeV/u Si+Au Collision (Peripheral)

13

Prospects on Single-Λ Hypernuclei

Relativistic Hypernuclei to Experimental Area

• 1/100 due to decay after 10 m separation line

0.5~5 hypernuclei/burst

• Fragments/Hypernuclei ~ 10⁷ (no collimation)

About 1 hypernuclei/burst

Fragments/Hypernuclei ~ 10⁶ (with collimation)
 About 10 hypernuclei/burst

About 10⁴ hypernuclei/day

• Not so huge, but enough to study decay processes

Possibility of Polarized Hypernuclei

Coalescence process

A polarization is small due to small p_T (~50 MeV/c)

Fragment may have polarization (unknown at such high energy)

• Secondary process

Polarization due to (π, K) reaction may be large ~ 0.3

P~0 ??

Coalescence

Secondary

Х

Background Events

- Nuclear reactions of fragments
 - Single track

Track with multi-hadron (pion) vertex

• Opening angle ~ 10 degrees (central rapidity)

Can be reduced by vacuum decay volume

Signal Events

• Mesonic decay mode

Track with single π^- vertex

4 GeV pion, opening angle ~ 1.5 degrees

• Non-mesonic decay mode

Track with a few protons vertex

25 GeV protons, opening angle ~ 1 degree

Dubna streamer chamber experiment

Detector Setup

• Lifetime measurement

• Weak decay study

• Size of hypernuclei

Possibility of Double- Λ Hypernuclei

Production Rates

- Direct double-Λ hypernuclei formation
 Coalescence two Λ to a fragment
 Cross section ~ 1 pb
- Through Ξ hypernuclei
 - Ξ hypernuclei formation ~ 5 nb
 - Mainly from Ξ coalescence with fragment
 - $({}^{4}\text{He}, {}^{8}\text{Be}, ...) + \Xi^{-}$
 - $\equiv N \rightarrow \Lambda \Lambda$ and $\Lambda \Lambda$ stay in nuclei ~ 10 %
 - ${}^{4}\text{He} + \Xi^{-} \rightarrow {}^{5}_{\Lambda\Lambda}\text{H}^{*} \rightarrow {}^{4}_{\Lambda\Lambda}\text{H} + n$

1/2000 of single- Λ hypernuclei

• If we detect 2000 single- Λ hypernuclei, we may see 1 double- Λ hypernuclei.

A few double- Λ hypernuclei in a day ? Life time effect ? ${}^{4}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}He + (\pi^{-}) \Rightarrow {}^{4}_{\Lambda}He \rightarrow {}^{3}He + p + (\pi^{-})$

Need magnetic field to estimate binding energy

• Profile at exit of SC dipole

Summary

- Production of relativistic hypernuclei by relativistic heavy-ion collisions was discussed. Production of relativistic light single- Λ hypernuclei amounts to 10000/day with a practical experimental condition.
- The relativistic hypernuclei are suitable to study decays of hypernuclei, and are valuable to study details of the ΛN weak interaction.
- Production of double- Λ hypernuclei was marginal. Configuration of the separation line should be optimized. Double- Λ hypernuclei like ${}^{4}_{\Lambda\Lambda}$ H reachable ??
- Comment: Production rate of light double-Λ hypernuclei is about 1000 times higher in the central rapidity region (about 1 in 10000 central collisions). Spectrometer like OMEGA at CERN may see it.