

K. Ozawa, CNS, University of Tokyo

Study of chiral property in dense matter using lepton decays of vector mesons at JHF.

Physics motivation / experimental signals Present experiments Plan of the experiment at JHF and R&D items Summary...

ozawa@cns.s.u-tokyo.ac.jp

K. Ozawa, CNS. Univ. of Tokyo

Chiral property of dense nuclear matter

• In free space

Spontaneous breaking of chiral symmetry

- In dense matter
 - →Partial chiral symmetry restoration
 - →Hadron modification is expected

Expected experimental signals

Direct measurements of mass modification

- Lepton decays of vector mesons
 - **→**ρ, ω, φ, J/ψ
- **→**K* -> Kγ

In-media mass modification

- shift of resonance position
- resonance broadening/narrowing
 - →We have to measure
 - dispersion relation
 - Need high statistics

Experiments

CLUES

Experiment	Measurements	Interests	
CERES	ρ modification	Temp. dep.	is modified in Hot Matter
KEK-TANASHI ES	ρ modification	Density dep.	is modified in He
GSI	π modification	Density dep.	is modified in He

Present & future experiments

RHIC(running)/LHC(2006) KEK-PS: $p+A \phi + X(\phi K+K-/e+e-)$ (Running) SPring-8: $\gamma + \phi + A^*(\phi K+K-)$ (Ready to run) GSI: d +A 3He+A* ($\eta\omega$ bound states) (Ready to run) GSI-HADES: $\pi + A \omega + A^*$ ($\omega e+e-$) (Preparation, 2001?)

NP01

CERN-SPS CERES/NA45

- Low mass electron pair production is measured in Pb – Au collision at 158 A GeV
- They observed an enhancement in the mass region 0.3<M_{ee}<0.7
 There is a time evolution of
 - There is a time evolution of temperature and density and the interpretation of the data is difficult.
 - mass resolution is not so good

GSI HADES

- Invariant mass spectra of ee pairs up to 1 GeV, using 1.0 A GeV heavy ion beam or hadron beams up to a few GeV.
- They are running C+C at 2 GeV/nucleon for a threeweek running period beginning November 19.
- They will produce data about the mass modification of ρ,ω mesons.

Detector Schematic View

KEK-PS E325 experiment

- p + (C,Cu) \rightarrow p, ω , ϕ + X
- Measure e⁺e⁻ pairs
 - →Invariant mass spectra
 - Compare heavy and light nuclei cases

K. Ozawa, CNS. Univ. of Tokyo

E325 Spectrometer

Present status of the experimental results

Meson modification is observed in nucleus.

Does it means QCD chiral symmetry restoration ?

→NOT YET

- How large the in-media broadening ?
 - SHAPE
 - DECAY RATE
- Other trivial reasons ?
 - Collisional broadening
 - Phase space effect

Need more experimental efforts

- Statistics
 - Accurate shape
 - Dispersion

– e+e -

Invariant mass spectrum of '99

Key points of spectrometer design

- Clean high intensity pencil beam (~ 10⁹ ppp) on thin target
 - →To suppress background in e⁺e⁻ channel
 - → Beam spot size of a few hundred of microns
 - → Suppress beam halo and fake trigger
 - → With wire target, helpful for tracking
- Large acceptance spectrometer to detect slow mesosn with high statistics.
 - →Larger matter effect is expected.
 - Detailed study become possible with high statistics.

Proposed spectrometer for JHF experiment

- A mosaic of 23 identical units, each of which has an aperture of 30 degrees by 30 degrees.
- Major electron identification is given by gas Cherenkov counters.
- EM calorimeter is used to measure not only electrons, but also photons. The measurements of K*->K+γ is available.
- 100 times larger statistics is expected.

Schematic view of spectrometer

R&D items

- Tracking detector cope with high intensity beam.
 →GEM detector?
- High efficiency electron identification counter with high intensity beam.
 - → Gas Cherenkov Counter?
 - Hadron Blind detector?
- Electron or Muon?
 - The mass resolution of muon pair is improved using silicon pixel detector (NA60).
 - \rightarrow Need simulations for determining which one is better.
- Detailed simulations for feasibility study
- Clean high intensity pencil beam. Optimized beam energy.

GEM for High rate tracking

- GEM (Gas Electron Multiplier) detector for high rate counting.
 - A thin sheet of plastic coated with metal on both sides and chemically pierced by a regular array of holes.
 - Applying a voltage (about 500 V) between both side.
 - High electric field in the holes makes an avalanche of electrons.
- No drop of gain up to particle flux of 10^5 Hz/mm

Hadron Blind Detector for Electron Identification

- Electrons to be detected produce Cherenkov photons in a gas radiator.
 - Photons are detected with CSI photo cathode and gas detector.
 - Propose by Y. Giomataris and G. Charpak.(Nucl.Instrum.Meth.A31 0:589-595,1991)
- Prototype was tested by Stornybrook group.(Nucl.Instrum.Meth.A400:24 3-254,1997)

Schematic view of HBD.

Summary

- There are several kinds of experimental efforts to address an important question on the chiral property at finite density.
- Mass modification of vector mesons is reported by several groups.
- At KEK-PS, in the e⁺e⁻ spectra, a significant shape difference was observed between the light and the heavy nuclear target.
- To study details of chiral properties in dense nuclear matter, high statistics data is needed.
- At JHF, spectrometer and beam will be improved and 100 times larger statistics is expected.

Electron efficiency and pion contamination

EM cal Energy.vs.Momentum

- The remaining eπ pair background was estimated to be about 13% in the final e⁺e⁻ pair sample.
- The contaminations like $\pi\pi$ pair to be negligibly small.