Possibility of moving the BNL-AGS D6 line to JHF

(International Workshop on Nuclear and Particle Physics at 50-GeV PS, KEK, Dec 10-12, 2001)

HOTCHI, Hideaki

Physics Department, Brookhaven National Laboratory

- I BNL-AGS D6 line
- *II How to adapt the D6 line to the JHF environment?*
- III Procedure to move the D6 line to JHF
- *IV* Possibility of cascade-hypernuclear spectroscopy by the (K^-, K^+) reaction at BNL-AGS D 6line

 $1.8 \, GeV/c \, (K^-, K^+) \, reaction \, (S=-2)$

* Ξ hypernuclear spectroscopy * Study of $\Lambda\Lambda$ hypernuclei by sequential pionic decays * Study of $\Lambda\Lambda$ hypernuclei by Hybrid - Emulsion Technique * γ - ray spectroscopy of $\Lambda\Lambda$ hypernuclei by Ge detector system * Y - N scattering (Ξ^-p eslastic scattering, $\Xi^-p \rightarrow \Lambda\Lambda$ reaction)

 $1.8 \, GeV/c \, (K^-, \pi^-) \, reaction \, (S=-1)$

* γ - ray spectroscopy of heavy Λ hypernuclei

I BNL-AGS D6 line

- Constructed at BNL-AGS in 1991
- Optimized for use in experiments that study Doubly Strange Systems (S=-2) with (K⁻,K⁺) reactions at 1.8 GeV/c

Past experiments at the AGS D6 line

*1991, 1992, 1993, 1995

E813 : Search for the H - dibaryon by Ξ^{-} caputure on d * 1994

E836 : Search for the H - dibaryon

by the (K^-, K^+) reaction on ³He

* 1992, 1993

E886 : Strangelet search in relativistic Si + Pt and Au + Pt collisions

* 1996

E885 : Search for double Λ hypernuclei and the H - dibaryon by Ξ ⁻caputure on ¹²C * 1997, 1998

E906 : Search for double Λ hypernuclei by observing characteristic π^{-} decays

* 1998

E929 : Measurement of spin - orbit splitting by the ${}^{13}C(K^{-,}\pi^{-}\gamma)$ reaction

* 1998, 2001

E930 : High - resolution γ spectroscopy of p - shell Λ hypernuclei using a large - acceptance Germanium detector (Hyperball)

<u>4-jaw collimator(ϑ - ϕ collimator)</u>

This is used to eliminate the direct pion beam contamination which can pass through the mass slits (MS1,2).

2-stage velocity selector

[CM1-E1-CM2]and [CM3-E2-CM4]

The electrostatic separator (E1 and E2) design is based on that of the KEK standard separator.

This 2-stage separation technique helps to eliminate secondary backgrounds, such as K^- decay in flight, as well as direct backgrounds originating from the production target.

Beam spectrometer

Momentum reconstruction: MP(x), ID1-3 (vv'uu'xx'), and Transport matrix $dP/P \le 0.1\%$ (design value) Particle identification: $Kbeam \equiv IT \times I\overline{C}$ (online trigger) Time-of-flight information between MT and IT (offline analysis)

Parameters of the D6 line

- * Target : 9(length)×0.7(width)×1.0(height)cm³ platinum
- * Central production angle : 5 deg
- * Beam line lenght : 31.6 m
- * Anguler acceptance : 1.6 msr
- * *Momentum range : up to 1.9 GeV/c*
- * Momentum acceptance: 6% (FWHM)
- * Dispersion: 4.5 cm/% at the first vertical focus point
- * K^{-} flux per 10^{13} protons :
 - $2.0 \times 10^{6} (\pi / K \text{ ratio} \approx 1) \text{ at } 1.8 \text{ GeV/c}$ $1.0 \times 10^{5} (\pi / K \text{ ratio} \approx 0.02) \text{ at } 0.9 \text{ GeV/c}$

II How to adopt the D6 line to the JHF environment ?

50-GeV proton beam : 300 Tp / pulse (750 kW)

* Provision against huge heat deposit and radiation damage to the beam line elements near to the production target

(D1, Q1, collimator.....)

- radiation-resistant coils and cables
- water-cooled magnet yoke
- water-cooled collimator downstream of the production target

* Provision against radiation induced problems with the first separator

- secondary beam should be properly collimated prior to being transmitted to the separator : place collimator and/or Q-doublet upstream of the separator

* Provision against high rate problem

.

- beam spectrometer should be added downstream of the second mass slit to minimize the high rate problem.

III Procedure to move the D6 line to JHF

.

This attempt can take place in the case that DOE drops support for medium energy experiments at BNL and the D6-line program is terminated.

> - This has to be coordinated through the BNL upper management (T. Kirk/P. Paul) and approved by DOE

What part of the elements should be moved ?? Expense ?? Man power?? – contribution from BNL people ?? (P. Pile, A. Rusek, ME group...)

Beam schedule at BNL-AGS (SEB)

* Approved experiments :

D6 - line E964 : Study of ΛΛ hypernuclei by Hibrid - Emulsion Technique - K. Nakazawa, K. Imai, H. Tamura

* *Proposals* :

D6 - line : Study of ΛΛ hypernuclei by Sequncial Pionic Decays - T. Fukuda, A. Rusek, R. Chrien D6 - line : Study of Kaonic nuclei - T. Kishimoto

IV Possibility of Ξ hypernuclear spectroscopy by the (K^{-}, K^{+}) reaction at BNL-AGS D6 line

- No data which confirm the existence of Ξ hypernuclei
- Very little information on the depth and the shape of Ξ nucleus potential

* Dover and Gal : Emulsion data
-
$$V_{0\Xi} = 21 - 24 \text{ MeV}$$

* KEK - E176 : Emulsion data
- $V_{0\Xi} = 16 - 17 \text{ MeV}$
* KEK - E224 (K⁻, K⁺) reactions on a scintillating fiber target
- $V_{0\Xi} \approx 16 \text{ MeV}$
* BNL - E885 ${}^{12}C(K^-, K^+)$ reactions
- $V_{0\Xi} \approx 14 \text{ MeV}$

 $\Xi N \rightarrow \Lambda \Lambda$ conversion - expected width $\leq a$ few MeV

Woods-Saxon potential

Folding potential using Shinmura's Xi-N interaction

Resolution : < 3 MeV

Poor momentum resolution

Energy resolution

* Momentum resolution of the MRS : **0.1 %** in assuming the tracking devices with 250 micron (rms) position resolution

* Momentum resolution of the beam spectrometer : < 0.1 % (design value)

* Energy loss fluctuation in 5g/cm² carbon target : 1.6 MeV (FWHM)

2.8 MeV (FWHM)

Yield estimation for the ${}^{12}C(K^-,K^+)^{12}_{\Xi}Be$ reaction

* 5 g/cm² carbon target

* K^+ survival rate : **0.49** (1.4 GeV/c K^+ , fright path length=7.5m)

* Spectrometer acceptance : 15 msr

* Cross section of the ground state considered : Motoba's angular distribution for the ¹² = Be ground state ($V_{\pm}=14$ MeV)

* Overall detector efficiency considered : 0.5

* K⁻ beam flux : 10¹³ for 10⁷ K⁻/pulse, 10³ pulses/hour, 10³ hours (Dedicated proton beam : 45 Tp / 2 sec pulse)

Ground state yield: 934 counts / 10³ hours

(280 counts/10³ hours even for ordinary beam condition :3*10⁶ K⁻/pulse)

Things under consideration

* To gain spectrometer acceptance

- Add another Quadrupole: QD(-D) to QQD(-D)

- Bend horizontally instead of vertically

* To improve momentum resolution

- Reverse polarity of the second Dipole to gain dispersion: D(-D) to DD

* *Provision for high rate (10⁷/ pulse)*

- High rate tracking device
- Trigger

* Target ?

.

- carbon?, heavier target?