Possibility of moving the BNL-AGS D6 line to JHF

(International Workshop on Nuclear and Particle Physics at 50-GeV PS, KEK, Dec 10-12, 2001) HOTCHI, Hideaki
Physics Department, Brookhaven National Laboratory

I BNL-AGS D6 line
II How to adapt the D6 line to the JHF environment?
III Procedure to move the D6 line to JHF
IV Possibility of cascade-hypernuclear spectroscopy by the $\left(K^{-}, K^{+}\right)$reaction at BNL-AGS D 6line

Physics in the JHF 2-GeV/c Kaon beam line

$1.8 \mathrm{GeV} / \mathrm{c}\left(\mathrm{K}^{-}, K^{+}\right)$reaction ($S=-2$)

* Ξ hypernuclear spectroscopy
* Study of $\Lambda \Lambda$ hypernuclei by sequential pionic decays
* Study of $\Lambda \Lambda$ hypernuclei by Hybrid - Emulsion Technique
* γ - ray spectroscopy of $\Lambda \Lambda$ hypernuclei by Ge detector system
* Y-N scattering ($\Xi^{-} p$ eslastic scattering, $\Xi^{-} p \rightarrow \Lambda \Lambda$ reaction)
$1.8 \mathrm{GeV} / \mathrm{c}\left(\mathrm{K}^{-}, \pi^{-}\right)$reaction ($\left.S=-1\right)$
* γ - ray spectroscopy of heavy Λ hypernuclei

I BNL-AGS D6 line

- Constructed at BNL-AGS in 1991
- Optimized for use in experiments that study Doubly Strange Systems ($\mathbf{S}=-2$) with ($\mathbf{K}^{-}, \mathbf{K}^{+}$) reactions at $\mathbf{1 . 8} \mathbf{G e V} / \mathbf{c}$

Past experiments at the AGS D6 line

* 1991, 1992, 1993, 1995

E813 : Search for the \boldsymbol{H}-dibaryon by $\boldsymbol{\Xi}$ 'caputure ond

* 1994

E836 : Search for the \boldsymbol{H}-dibaryon
by the $\left(\mathrm{K}^{-}, \mathrm{K}^{+}\right)$reaction on ${ }^{3} \mathrm{He}$

* 1992, 1993

E886 : Strangelet search in relativistic Si + Pt and Au + Pt collisions

* 1996

E885 : Search for double Λ hypernuclei
and the H-dibaryon by Ξ caputure on ${ }^{12} \mathrm{C}$

* 1997, 1998

E906 : Search for double Λ hypernuclei by observing characteristic π^{-d} decays

* 1998

E929: Measurement of spin-orbit splitting by the ${ }^{13} C\left(K^{-}, \pi^{-} \gamma\right)$ reaction

* 1998, 2001

E930 : High - resolution γ spectroscopy of p-shell Λ hypernuclei using a large - acceptance Germanium detector (Hyperball)

4-jaw collimator ($\vartheta-\phi$ collimator)

This is used to eliminate the direct pion beam contamination which can pass through the mass slits (MS1,2).

$\underline{2-\text { stage velocity selector }}$

[CM1-E1-CM2]and [CM3-E2-CM4]
The electrostatic separator (E1 and E2) design is based on that of the KEK standard separator.

This 2-stage separation technique helps to eliminate secondary backgrounds, such as K^{-}decay in flight, as well as direct backgrounds originating from the production target.

Beam spectrometer

Momentum reconstruction: Particle identification:

$$
\begin{array}{cc}
M P(x), \text { ID1-3 (vv'uu'xx'), } & \text { Kbeam } \equiv I T \times I \bar{C} \text { (online trigger) } \\
\text { and Transport matrix } & \text { Time-of-flight information between MT and IT } \\
d P / P \leq 0.1 \% \text { (design value) } & \text { (offline analysis) }
\end{array}
$$

Parameters of the D6 line

* Target : 9 (length) $\times 0.7$ (width) $\times 1.0($ height $) \mathrm{cm}^{3}$ platinum
* Central production angle $: 5 \mathrm{deg}$
* Beam line lenght : 31.6 m
* Anguler acceptance: 1.6 msr
* Momentum range : up to 1.9 GeV/c
* Momentum acceptance : 6\% (FWHM)
* Dispersion : $4.5 \mathrm{~cm} / \%$ at the first vertical focus point
* K^{-}flux per 10^{13} protons :

$$
\begin{aligned}
& 2.0 \times 10^{6}(\pi / K \text { ratio } \approx 1) \text { at } 1.8 \mathrm{GeV} / \mathrm{c} \\
& 1.0 \times 10^{5}(\pi / \mathrm{K} \text { ratio } \approx 0.02) \text { at } 0.9 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

II How to adopt the D6 line

to the JHF environment?

50-GeV proton beam : 300 Tp / pulse (750 kW)

* Provision against huge heat deposit and radiation damage to the beam line elements near to the production target (D1, Q1, collimator......)
- radiation-resistant coils and cables
- water-cooled magnet yoke
- water-cooled collimator downstream of the production target
* Provision against radiation induced problems with the first separator
- secondary beam should be properly collimated prior to being transmitted to the separator : place collimator and/or Q-doublet upstream of the separator
* Provision against high rate problem
- beam spectrometer should be added downstream of the second mass slit to minimize the high rate problem.

III Procedure to move the D6 line to JHF

This attempt can take place in the case that $D O E$ drops support for medium energy experiments at BNL and the D6-line program is terminated.

- This has to be coordinated through the BNL upper management (T. Kirk/P. Paul) and approved by DOE

What part of the elements should be moved??
Expense??
Man power?? - contribution from BNL people ??
(P. Pile, A. Rusek, ME group...)

Beam schedule at BNL-AGS (SEB)

IV Possibility of 三 hypernuclear spectroscopy by the (K^{-}, K^{+}) reaction at BNL-AGS D6 line

- No data which confirm the existence of $\boldsymbol{\Xi}$ hypernuclei
- Very little information on the depth and the shape of $\boldsymbol{\Xi}$-nucleus potential
* Dover and Gal : Emulsion data

$$
-V_{0 \Xi}=21-24 \mathrm{MeV}
$$

* KEK-E176 : Emulsion data

$$
-V_{O \Xi}=16-17 \mathrm{MeV}
$$

* KEK - E224 (K^{-}, K^{+}) reactions on a scintillating fiber target
- $V_{0 \Xi} \approx 16 \mathrm{MeV}$
* BNL-E885 ${ }^{12} C\left(K^{-}, K^{+}\right)$reactions
- $V_{0 \Xi} \approx 14 \mathrm{MeV}$
$\Xi N \rightarrow \Lambda$ conversion - expected width $\leq a \operatorname{few} M e V$

$$
V_{0}=-16 \mathrm{MeV}, W_{0}=-1 \mathrm{MeV},
$$

Assumed spectrometer resolution: 2 MeV

Woods-Saxon potential

Folding potential using Shinmura's Xi-N interaction

Resolution : < $\mathbf{3} \mathbf{M e V}$

Current $K \pm$ spectrometer system in the D6-line area

LANL MRS spectrometer: $Q D(-D)$

Parameters of MRS system

* Spectrometer length $\quad 7.5 \mathrm{~m}$ (target to focal plane)
* Maximum central momentum : $1.5 \mathrm{GeV} / \mathrm{c}$ @ 17 kG
* Momentum acceptance : $\pm 20 \%$
* Horizontal acceptance angles : $\pm 60 \mathrm{mrad}$
*Vertical acceptance angles : $\pm 40 \mathrm{mrad}$
$*$ Solid angle $: 9 \mathrm{mrs} \longrightarrow 4 \mathrm{msr}$ in assuming the actual beam size
*Net bend angle $\quad: 18 \mathrm{deg} \quad \mathbf{c m}(\boldsymbol{H}) * \mathbf{0 . 6 c m}(\boldsymbol{V})$ in $\mathbf{F W H M}$
* Dispersion at the focal plane : $0.96 \% / \mathrm{cm}$

MRS: $18 Q 36+D(-D)$
6.5 m

Energy resolution

* Momentum resolution of the MRS : $\mathbf{0 . 1}$ \% in assuming the tracking devices with 250 micron (rms) position resolution
* Momentum resolution of the beam spectrometer : < $\mathbf{0 . 1} \%$ (design value)
* Energy loss fluctuation in 5g/cm² carbon target : 1.6 MeV (FWHM)

2.8 MeV (FWHM)

Yield estimation for the ${ }^{12} \mathrm{C}\left(\mathrm{K}^{-}, K^{+}\right)_{\Xi}^{12}$ Be reaction

* $5 \mathrm{~g} / \mathrm{cm}^{2}$ carbon target
* K^{+}survival rate : 0.49 (1.4 GeV/c K^{+}, fright path length=7.5m)
* Spectrometer acceptance : $\mathbf{1 5} \mathbf{~ m s r}$
* Cross section of the ground state considered :

Motoba's angular distribution for the ${ }^{12} \equiv B e$ ground state ($V_{\equiv}=14 \mathrm{MeV}$)

* Overall detector efficiency considered : 0.5
* K- beam flux : 10^{13} for $10^{7} \mathrm{~K}^{-} /$pulse, 10^{3} pulses/hour, 10^{3} hours
(Dedicated proton beam : $45 \mathrm{Tp} / 2$ sec pulse)
Ground state yield: 934 counts / 10^{3} hours
(280 counts/10 ${ }^{3}$ hours even for ordinary beam condition : $3 * 10^{6} \mathrm{~K} / \mathrm{pulse}$)

Things under consideration

* To gain spectrometer acceptance
- Add another Quadrupole: $Q D(-D)$ to $Q Q D(-D)$
- Bend horizontally instead of vertically
* To improve momentum resolution
- Reverse polarity of the second Dipole to gain dispersion: $D(-D)$ to $D D$
* Provision for high rate ($10^{7} /$ pulse)
- High rate tracking device
- Trigger
* Target?
- carbon?, heavier target?

