50- GeV Proton Synchrotron

Y. Mori (KEK)

* Introduction

* Design

* Hardware R&D

Facility Layout

Tunnel : cross section

Specifications

^ 50GeV PS

of protons repetition rate average beam current beam power @50GeV

^ 3GeV PS

injection energy # of protons repetition rate average beam current beam power @50GeV 3.3 E14 ppp 0.3 Hz (~3.6 sec) 15 microA (slow beam extr.) 0.75 MW

400 MeV 0.83 E14 ppp 25 Hz (40 msec) 333 micro A 1 MW

Acceleration Cycle

High intensity proton accelerators

50GeV PS

* AGS (BNL) 30GeV 0.6-0.7x10E14 ppp * Maing Injector (FNAL) 120GeV 0.2-0.3x10E14 ppp

3GeV PS

* ISIS (RAL) * PSR (LANL) * SNS 800MeV 0.2MW 800MeV 0.6MW 1.3GeV 1-2MW

Minimization of Beam Loss : key issue for reality

"radiation safety" & "maintenance" beam loss-> * controlled : localized and shielded (ESS at extraction) * uncontrolled : whole ring ~1W/m allowed beam losses : -Injection 0.3% uncont. 135W -collimator 450W 1% cont. 0.5W/m 0.36% uncont. -ring 7.5kW 1% contr. -slow beam ext. 1.125kW0.15% contr. -fast beam ext. total 8.9kW 2.7% slow beam ext. 2.5kW 1.8% fast beam ext.

Residual Radiation Activity

example -> 3GeV PS collimator

. Inner side @ Jaw > 1Sv/h (beam loss 1.2kW)

. Outer shield surface shield : 30cm iron & 40cm concrete ; ~7mSv/h

* after 1day cooling off following 30days operation

Radiation Shield (1)

Radiation Shield (2)

Radiation Shield (3)

.

Radiation Shield (4)

3-50GeV BT (downstream of Hakken-street)

What causes beam loss?

Beam Dynamics View: high intensity beam beahaviors

- Space Charge Effect
 - Coherent, Incoherent, Non-linearity, Halo formation
- Instablities : e-p inst.
- others?
- large acceptance
 - fringe field effect

Space Charge Effect (tune shift :spread)

- . 50GeV PS
 - *0.14*

*emittance 54 πmm.mrad *beam intensity 3.33x10E14 ppp *bunching factor 0.27 *form factor 1.7 . 3GeV PS

-0.15

*emittance 214 πmm.mrad
*beam intensity 8.33x10E13ppp
*bunching factor 0.42

Emittance & Acceptance for 50GeV PS

	emittance (πmm.mrad)	collimator acceptance	phsyical acceptance
3GeV PS			
injection	144	<i>32</i> 4	486
extraction	54(core)		
3GeV BT			
collimator	54	54	120
50GeV PS			
injection	54	54-81	81
extraction	10		
(30GeV)			
extraction	6.1		
(50GeV)			

Lattice of 50GeV PS

Layout of Magnets (Missing Bend. Mag. Section)

50GeV MarrWeev Ver.25 (Oct 17, 2001)

Layout of Magnets (Fast Extraction)

50GeV PlanWiew Ver.25 (Do. 17, 201)

Hardware R&D

Dipole Magnet for 50GeV PS (R&D)

Gap Height Useful Aperture Field Length

106mm 120mm 0.143-1.9 5.85m

Field Measurement : **Dipole Magnet (R&D)**

Good agreement with calculation

Quadrupole Magnet of 50GeV PS (R&D)

Bore Radius 63mmUsefule Ap.132mmMax. Field18T/mLength(max.)1.86m

Vacuum Duct

bending magnet

quadrupole magnet

Magnet Power Supply

* development of new type high power switching devices (IGBT, IEGT)

accelerator	year	spec.	<i>w.f</i> .	CONV.
INS-ES	1962	21.5Hz	sin.	MG
KEK-booster	1974	20Hz	sin.	SCR
KEK PS	1976	0.5Hz	trape.	SCR
SPring-8 syn.	1996	1Hz	trape.	SCR
Tsukuba U.	2000	0.4Hz	trape.	IGBT

Magnet Power Supply (R&D)

* conver-chopper type (high freq. switch. ~80kHz) * no reactive power -> 100 % power factor

- * *ripple* ~ 10⁻⁶
- * tracking error ~10⁻⁴

RF Cavity with Magnetic Alloy

* **RF behaviour at high field** µ**Qf (shunt.imp.) vs. B**_{rf}

High Field Gradient RF Cavity with Magnetic Alloy (MA Cavity)

Field Gradient of RF Cavity

MA Cavity - Cut Core

* Increase of Q-value with cut core -> beam loading

High Gradient MA Cavity (R&D)

* Cooling (indirect)

core cutting with water-jet

MA Caivty

Electro-static Septum (R&D)

* High Field -> 237kV (1.4 x design voltage) * Need high quality ceramic feedthrough

Future

* Neutrino Factory (Japanese scenario) - FFAG based * 50GeV PS as Proton Driver of 1-4 MW

FFAG based neutrino factory

